-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 72bc7e5
Showing
10 changed files
with
1,782 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
# Ignore virtual environment files | ||
venv/ | ||
venv38/ | ||
*.pyc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
## simple diffusion: End-to-end diffusion for high resolution images | ||
### Unofficial PyTorch Implementation | ||
|
||
**Simple diffusion: End-to-end diffusion for high resolution images** | ||
[Emiel Hoogeboom](https://arxiv.org/search/cs?searchtype=author&query=Hoogeboom,+E), [Jonathan Heek](https://arxiv.org/search/cs?searchtype=author&query=Heek,+J), [Tim Salimans](https://arxiv.org/search/cs?searchtype=author&query=Salimans,+T) | ||
https://arxiv.org/abs/2301.11093 | ||
|
||
### Requirements | ||
* All testing and development was conducted on 4x 16GB NVIDIA V100 GPUs | ||
* 64-bit Python 3.8 and PyTorch 2.1 (or later). See [https://pytorch.org](https://pytorch.org/) for PyTorch install instructions. | ||
|
||
For convenience, a `requirements.txt` file is included to install the required dependencies in an environment of your choice. | ||
|
||
### Usage | ||
|
||
The code for training a diffusion model is self-contained in the `simpleDiffusion` class. Set-up and preparation is included in the `train.py` file: | ||
|
||
from diffusion.unet import UNet2D | ||
from diffusion.simple_diffusion import simpleDiffusion | ||
|
||
from datasets import load_dataset | ||
from torchvision import transforms | ||
import torch | ||
from diffusers.optimization import get_cosine_schedule_with_warmup | ||
|
||
|
||
class TrainingConfig: | ||
image_size = 128 # the generated image resolution | ||
train_batch_size = 4 | ||
num_epochs = 100 | ||
gradient_accumulation_steps = 1 | ||
learning_rate = 5e-5 | ||
lr_warmup_steps = 10000 | ||
save_image_epochs = 100 | ||
mixed_precision = "fp16" # `no` for float32, `fp16` for automatic mixed precision | ||
output_dir = "ddpm-butterflies-128" # the model name locally and on the HF Hub | ||
overwrite_output_dir = True # overwrite the old model when re-running the notebook | ||
seed = 0 | ||
|
||
|
||
def main(): | ||
config = TrainingConfig | ||
|
||
dataset_name = "huggan/smithsonian_butterflies_subset" | ||
|
||
dataset = load_dataset(dataset_name, split="train") | ||
|
||
preprocess = transforms.Compose( | ||
[ | ||
transforms.Resize((config.image_size, config.image_size)), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | ||
] | ||
) | ||
|
||
def transform(examples): | ||
images = [preprocess(image.convert("RGB")) for image in examples["image"]] | ||
return {"images": images} | ||
|
||
dataset.set_transform(transform) | ||
|
||
train_loader = torch.utils.data.DataLoader( | ||
dataset, | ||
batch_size=config.train_batch_size, | ||
shuffle=True, | ||
) | ||
|
||
unet = UNet2D( | ||
sample_size=config.image_size, # the target image resolution | ||
in_channels=3, # the number of input channels, 3 for RGB images | ||
out_channels=3, # the number of output channels | ||
layers_per_block=2, # how many ResNet layers to use per UNet block | ||
block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channels for each UNet block | ||
down_block_types=( | ||
"DownBlock2D", | ||
"DownBlock2D", | ||
"DownBlock2D", | ||
"DownBlock2D", | ||
"AttnDownBlock2D", | ||
"DownBlock2D", | ||
), | ||
up_block_types=( | ||
"UpBlock2D", | ||
"AttnUpBlock2D", | ||
"UpBlock2D", | ||
"UpBlock2D", | ||
"UpBlock2D", | ||
"UpBlock2D", | ||
), | ||
) | ||
|
||
optimizer = torch.optim.Adam(unet.parameters(), lr=config.learning_rate) | ||
lr_scheduler = get_cosine_schedule_with_warmup( | ||
optimizer, | ||
num_warmup_steps=config.lr_warmup_steps, | ||
num_training_steps=len(train_loader) * config.num_epochs, | ||
) | ||
|
||
diffusion_model = simpleDiffusion( | ||
unet=unet, | ||
image_size=config.image_size | ||
) | ||
|
||
diffusion_model.train_loop( | ||
config=config, | ||
optimizer=optimizer, | ||
train_dataloader=train_loader, | ||
lr_scheduler=lr_scheduler | ||
) | ||
|
||
if __name__ == '__main__': | ||
main() | ||
Multiple versions of the U-Net architecture are available (UNet2DModel, ADM), with U-ViT and others planning to be included in the future. | ||
|
||
### Multi-GPU Training | ||
The `simpleDiffusion` class is equipped with HuggingFace's [Accelerator](https://huggingface.co/docs/accelerate/en/index) wrapper for distributed training. Multi-GPU training is easily done via: | ||
`accelerate launch --multi-gpu train.py` | ||
|
||
### Citations | ||
|
||
@inproceedings{Hoogeboom2023simpleDE, | ||
title = {simple diffusion: End-to-end diffusion for high resolution images}, | ||
author = {Emiel Hoogeboom and Jonathan Heek and Tim Salimans}, | ||
year = {2023} | ||
} | ||
|
||
@InProceedings{pmlr-v139-nichol21a, | ||
title = {Improved Denoising Diffusion Probabilistic Models}, | ||
author = {Nichol, Alexander Quinn and Dhariwal, Prafulla}, | ||
booktitle = {Proceedings of the 38th International Conference on Machine Learning}, | ||
pages = {8162--8171}, | ||
year = {2021}, | ||
editor = {Meila, Marina and Zhang, Tong}, | ||
volume = {139}, | ||
series = {Proceedings of Machine Learning Research}, | ||
month = {18--24 Jul}, | ||
publisher = {PMLR}, | ||
pdf = {http://proceedings.mlr.press/v139/nichol21a/nichol21a.pdf}, | ||
url = {https://proceedings.mlr.press/v139/nichol21a.html} | ||
} | ||
|
||
@inproceedings{Hang2023EfficientDT, | ||
title = {Efficient Diffusion Training via Min-SNR Weighting Strategy}, | ||
author = {Tiankai Hang and Shuyang Gu and Chen Li and Jianmin Bao and Dong Chen and Han Hu and Xin Geng and Baining Guo}, | ||
year = {2023} | ||
} |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
""" | ||
Helpers to train with 16-bit precision. | ||
Reference: | ||
Nichols, J., & Dhariwal, P. (2021). Improved Denoising Diffusion | ||
Probabilistic Models. Retrieved from https://arxiv.org/abs/2102.09672 | ||
The code is adapted from the official implementation at: | ||
https://github.com/openai/improved-diffusion/tree/main/improved_diffusion | ||
""" | ||
|
||
import torch.nn as nn | ||
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors | ||
|
||
|
||
def convert_module_to_f16(l): | ||
""" | ||
Convert primitive modules to float16. | ||
""" | ||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): | ||
l.weight.data = l.weight.data.half() | ||
l.bias.data = l.bias.data.half() | ||
|
||
|
||
def convert_module_to_f32(l): | ||
""" | ||
Convert primitive modules to float32, undoing convert_module_to_f16(). | ||
""" | ||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): | ||
l.weight.data = l.weight.data.float() | ||
l.bias.data = l.bias.data.float() | ||
|
||
|
||
def make_master_params(model_params): | ||
""" | ||
Copy model parameters into a (differently-shaped) list of full-precision | ||
parameters. | ||
""" | ||
master_params = _flatten_dense_tensors( | ||
[param.detach().float() for param in model_params] | ||
) | ||
master_params = nn.Parameter(master_params) | ||
master_params.requires_grad = True | ||
return [master_params] | ||
|
||
|
||
def model_grads_to_master_grads(model_params, master_params): | ||
""" | ||
Copy the gradients from the model parameters into the master parameters | ||
from make_master_params(). | ||
""" | ||
master_params[0].grad = _flatten_dense_tensors( | ||
[param.grad.data.detach().float() for param in model_params] | ||
) | ||
|
||
|
||
def master_params_to_model_params(model_params, master_params): | ||
""" | ||
Copy the master parameter data back into the model parameters. | ||
""" | ||
# Without copying to a list, if a generator is passed, this will | ||
# silently not copy any parameters. | ||
model_params = list(model_params) | ||
|
||
for param, master_param in zip( | ||
model_params, unflatten_master_params(model_params, master_params) | ||
): | ||
param.detach().copy_(master_param) | ||
|
||
|
||
def unflatten_master_params(model_params, master_params): | ||
""" | ||
Unflatten the master parameters to look like model_params. | ||
""" | ||
return _unflatten_dense_tensors(master_params[0].detach(), tuple(tensor for tensor in model_params)) | ||
|
||
|
||
def zero_grad(model_params): | ||
for param in model_params: | ||
# Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group | ||
if param.grad is not None: | ||
param.grad.detach_() | ||
param.grad.zero_() |
Oops, something went wrong.