forked from nomic-ai/gpt4all
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
809680d
commit fb9ff9c
Showing
2 changed files
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# model/tokenizer | ||
model_name: "nomic-ai/gpt4all-gptj-multinode-deepspeed-finetuned-epoch_0" | ||
tokenizer_name: "EleutherAI/gpt-j-6B" | ||
|
||
# dataset | ||
streaming: false | ||
num_proc: 64 | ||
dataset_path: "data_multiplus" | ||
max_length: 1024 | ||
batch_size: 32 | ||
|
||
# logging | ||
seed: 42 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
import torch | ||
import torch.nn as nn | ||
from argparse import ArgumentParser | ||
from read import read_config | ||
from accelerate.utils import set_seed | ||
from data import load_data_for_inference | ||
from tqdm import tqdm | ||
from datasets import concatenate_datasets, Dataset | ||
import torch.distributed as dist | ||
from transformers.trainer_pt_utils import ShardSampler, distributed_concat, nested_numpify | ||
from transformers import DefaultDataCollator | ||
from torch.utils.data import DataLoader | ||
|
||
|
||
def calc_cross_entropy_no_reduction(lm_logits, labels): | ||
# calculate cross entropy across batch dim | ||
shift_logits = lm_logits[..., :-1, :].contiguous() | ||
shift_labels = labels[..., 1:].contiguous() | ||
# Flatten the tokens | ||
loss_fct = nn.CrossEntropyLoss(reduction='none') | ||
loss = loss_fct(shift_logits.permute(0, 2, 1), shift_labels).mean(dim=1) | ||
|
||
return loss | ||
|
||
|
||
def rank0_print(msg): | ||
if dist.get_rank() == 0: | ||
print(msg) | ||
|
||
|
||
def inference(config): | ||
set_seed(config['seed']) | ||
|
||
rank0_print(f"World size: {dist.get_world_size()}") | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length']) | ||
# llama has no pad token, set it to new token | ||
if tokenizer.pad_token is None: | ||
tokenizer.pad_token = tokenizer.eos_token | ||
|
||
|
||
train_dataset, val_dataset = load_data_for_inference(config, tokenizer) | ||
|
||
num_processes = dist.get_world_size() | ||
local_rank = dist.get_rank() | ||
|
||
train_sampler = ShardSampler(train_dataset, config["batch_size"], num_processes=num_processes, process_index=local_rank) | ||
train_dataloader = DataLoader( | ||
train_dataset, | ||
collate_fn=DefaultDataCollator(), | ||
batch_size=config["batch_size"], | ||
sampler=train_sampler | ||
) | ||
|
||
val_sampler = ShardSampler(val_dataset, config["batch_size"], num_processes=num_processes, process_index=local_rank) | ||
val_dataloader = DataLoader( | ||
val_dataset, | ||
collate_fn=DefaultDataCollator(), | ||
batch_size=config["batch_size"], | ||
sampler=val_sampler | ||
) | ||
|
||
|
||
model = AutoModelForCausalLM.from_pretrained(config["model_name"], | ||
trust_remote_code=True, | ||
torch_dtype=torch.bfloat16, | ||
) | ||
|
||
model.to(f"cuda:{local_rank}") | ||
|
||
with torch.no_grad(): | ||
train_outputs = {"loss": [], "embeddings": [], "index": []} | ||
for batch in tqdm(train_dataloader, disable=local_rank != 0): | ||
batch["input_ids"] = batch["input_ids"].to(f"cuda:{local_rank}") | ||
batch["labels"] = batch["labels"].to(f"cuda:{local_rank}") | ||
outputs = model(input_ids=batch["input_ids"], labels=batch["labels"], output_hidden_states=True) | ||
loss = calc_cross_entropy_no_reduction(outputs.logits, batch["labels"]) | ||
train_outputs["loss"].extend(loss) | ||
|
||
embeddings = outputs.hidden_states[-1] | ||
batch_size = batch["input_ids"].shape[0] | ||
sequence_lengths = [] | ||
# since we use mutiturn with multiple <|endoftext|>, we need to find the place where | ||
# <|endoftext|> is repeated | ||
for item in batch["input_ids"]: | ||
indices = torch.where(item == tokenizer.pad_token_id)[0] | ||
found = False | ||
for index in indices: | ||
# case where sequence is less than max length | ||
if torch.all(item[index:] == tokenizer.pad_token_id): | ||
sequence_lengths.append(index) | ||
found = True | ||
break | ||
# case where sequence is >= max length | ||
if not found: | ||
sequence_lengths.append(len(item) - 1) | ||
|
||
sequence_lengths = torch.tensor(sequence_lengths) | ||
pooled_logits = embeddings[torch.arange(batch_size, device=embeddings.device), sequence_lengths] | ||
|
||
train_outputs["embeddings"].extend(pooled_logits) | ||
train_outputs["index"].extend(batch["index"].to(model.device)) | ||
|
||
torch.cuda.empty_cache() | ||
|
||
dist.barrier() | ||
gathered_train = nested_numpify(distributed_concat(train_outputs)) | ||
|
||
gathered_train["index"] = [t.item() for t in gathered_train["index"]] | ||
gathered_train["loss"] = [t.item() for t in gathered_train["loss"]] | ||
|
||
df_train = Dataset.from_dict(gathered_train) | ||
df_train = df_train.sort("index") | ||
|
||
train_dataset = train_dataset.add_column("embeddings", df_train["embeddings"]) | ||
train_dataset = train_dataset.add_column("loss", df_train["loss"]) | ||
train_dataset = train_dataset.add_column("is_train", [True] * len(train_dataset)) | ||
|
||
val_outputs = {"loss": [], "embeddings": [], "index": []} | ||
for batch in tqdm(val_dataloader, disable=local_rank != 0): | ||
batch["input_ids"] = batch["input_ids"].to(f"cuda:{local_rank}") | ||
batch["labels"] = batch["labels"].to(f"cuda:{local_rank}") | ||
outputs = model(input_ids=batch["input_ids"], labels=batch["labels"]) | ||
loss = calc_cross_entropy_no_reduction(outputs.logits, batch["labels"]) | ||
val_outputs["loss"].extend(loss) | ||
|
||
logits = outputs.logits | ||
batch_size = batch["input_ids"].shape[0] | ||
sequence_lengths = [] | ||
# since we use mutiturn with multiple <|endoftext|>, we need to find the place where | ||
# <|endoftext|> is repeated | ||
for item in batch["input_ids"]: | ||
indices = torch.where(item == tokenizer.pad_token_id)[0] | ||
found = False | ||
for index in indices: | ||
if torch.all(item[index:] == tokenizer.pad_token_id): | ||
sequence_lengths.append(index) | ||
found = True | ||
break | ||
|
||
# no match found | ||
if not found: | ||
sequence_lengths.append(len(item) - 1) | ||
|
||
sequence_lengths = torch.tensor(sequence_lengths) | ||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | ||
|
||
val_outputs["embeddings"].extend(pooled_logits) | ||
val_outputs["index"].extend(batch["index"].to(model.device)) | ||
|
||
torch.cuda.empty_cache() | ||
|
||
dist.barrier() | ||
gathered_val = nested_numpify(distributed_concat(val_outputs)) | ||
|
||
gathered_val["index"] = [t.item() for t in gathered_val["index"]] | ||
gathered_val["loss"] = [t.item() for t in gathered_val["loss"]] | ||
|
||
df_val = Dataset.from_dict(gathered_val) | ||
df_val = df_val.sort("index") | ||
|
||
val_dataset = val_dataset.add_column("embeddings", df_val["embeddings"]) | ||
val_dataset = val_dataset.add_column("loss", df_val["loss"]) | ||
val_dataset = val_dataset.add_column("is_train", [False] * len(val_dataset)) | ||
|
||
df = concatenate_datasets([train_dataset, val_dataset]) | ||
df.to_json("epoch_1_checkpoint.jsonl", lines=True, orient="records", num_proc=64) | ||
|
||
|
||
def main(): | ||
dist.init_process_group("nccl") | ||
parser = ArgumentParser() | ||
parser.add_argument("--config", type=str, default="config.yaml") | ||
|
||
args = parser.parse_args() | ||
config = read_config(args.config) | ||
|
||
inference(config) | ||
|
||
|
||
if __name__ == "__main__": | ||
# parse arguments by reading in a config | ||
main() | ||
|