Skip to content

Commit

Permalink
[Example] Rgcn support ogbn-mag dataset. (dmlc#1812)
Browse files Browse the repository at this point in the history
* rgcn support ogbn-mag dataset

* upd

* multi-gpu val and test

* Fix

* fix

* Add support for ogbn-mag

* Fix

* Fix

* Fix

* Fix

* Add layer_norm

* update

* Fix merge

* Clean some code

* update Readme

* upd

Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
  • Loading branch information
4 people authored Aug 9, 2020
1 parent e751577 commit 4ef01db
Show file tree
Hide file tree
Showing 6 changed files with 304 additions and 119 deletions.
22 changes: 18 additions & 4 deletions examples/pytorch/rgcn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ python3 entity_classify.py -d am --n-bases=40 --n-hidden=10 --l2norm=5e-4 --test
### Entity Classification with minibatch
AIFB: accuracy avg(5 runs) 90.56%, best 94.44% (DGL)
```
python3 entity_classify_mp.py -d aifb --testing --gpu 0 --fanout=20 --batch-size 128
python3 entity_classify_mp.py -d aifb --testing --gpu 0 --fanout='20,20' --batch-size 128
```

MUTAG: accuracy avg(5 runs) 66.77%, best 69.12% (DGL)
Expand All @@ -49,16 +49,30 @@ python3 entity_classify_mp.py -d mutag --l2norm 5e-4 --n-bases 30 --testing --gp
```

BGS: accuracy avg(5 runs) 91.72%, best 96.55% (DGL)

```
python3 entity_classify_mp.py -d bgs --l2norm 5e-4 --n-bases 40 --testing --gpu 0 --fanout 40 --n-epochs=40 --batch-size=128
python3 entity_classify_mp.py -d bgs --l2norm 5e-4 --n-bases 40 --testing --gpu 0 --fanout '40,40' --n-epochs=40 --batch-size=128
```

AM: accuracy avg(5 runs) 88.28%, best 90.40% (DGL)
```
python3 entity_classify_mp.py -d am --l2norm 5e-4 --n-bases 40 --testing --gpu 0 --fanout 35 --batch-size 256 --lr 1e-2 --n-hidden 16 --use-self-loop --n-epochs=40
python3 entity_classify_mp.py -d am --l2norm 5e-4 --n-bases 40 --testing --gpu 0 --fanout '35,35' --batch-size 256 --lr 1e-2 --n-hidden 16 --use-self-loop --n-epochs=40
```

### Entity Classification on OGBN-MAG
Test-bd: P3-8xlarge

OGBN-MAG accuracy 46.22
```
python3 entity_classify_mp.py -d ogbn-mag --testing --fanout='25,30' --batch-size 512 --n-hidden 64 --lr 0.01 --num-worker 0 --eval-batch-size 8 --low-mem --gpu 0,1,2,3,4,5,6,7 --dropout 0.5 --use-self-loop --n-bases 2 --n-epochs 3 --mix-cpu-gpu --node-feats --layer-norm
```

OGBN-MAG without node-feats 43.24
```
python3 entity_classify_mp.py -d ogbn-mag --testing --fanout='25,25' --batch-size 256 --n-hidden 64 --lr 0.01 --num-worker 0 --eval-batch-size 8 --low-mem --gpu 0,1,2,3,4,5,6,7 --dropout 0.5 --use-self-loop --n-bases 2 --n-epochs 3 --mix-cpu-gpu --layer-norm
```

Test-bd: P2-8xlarge

### Link Prediction
FB15k-237: MRR 0.151 (DGL), 0.158 (paper)
```
Expand Down
Loading

0 comments on commit 4ef01db

Please sign in to comment.