- [2023.09.20] Support InternLM-20B models!
- [2023.09.06] Support Baichuan2 models!
- [2023.08.30] XTuner is released, with multiple fine-tuned adapters on HuggingFace.
XTuner is a toolkit for efficiently fine-tuning LLM, developed by the MMRazor and MMDeploy teams.
- Efficiency: Support LLM fine-tuning on consumer-grade GPUs. The minimum GPU memory required for 7B LLM fine-tuning is only 8GB, indicating that users can use nearly any GPU (even the free resource, e.g., Colab) to fine-tune custom LLMs.
- Versatile: Support various LLMs (InternLM, Llama2, ChatGLM2, Qwen, Baichuan2, ...), datasets (MOSS_003_SFT, Alpaca, WizardLM, oasst1, Open-Platypus, Code Alpaca, Colorist, ...) and algorithms (QLoRA, LoRA), allowing users to choose the most suitable solution for their requirements.
- Compatibility: Compatible with DeepSpeed 🚀 and HuggingFace 🤗 training pipeline, enabling effortless integration and utilization.
Models | SFT Datasets | Data Pipelines | Algorithms |
-
Install XTuner via pip
pip install xtuner
or with DeepSpeed integration
pip install 'xtuner[deepspeed]'
-
Install XTuner from source
git clone https://github.com/InternLM/xtuner.git cd xtuner pip install -e '.[all]'
XTuner supports the efficient fine-tune (e.g., QLoRA) for LLMs. Dataset prepare guides can be found on dataset_prepare.md.
-
Step 0, prepare the config. XTuner provides many ready-to-use configs and we can view all configs by
xtuner list-cfg
Or, if the provided configs cannot meet the requirements, please copy the provided config to the specified directory and make specific modifications by
xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH}
-
Step 1, start fine-tuning.
xtuner train ${CONFIG_NAME_OR_PATH}
For example, we can start the QLoRA fine-tuning of InternLM-7B with oasst1 dataset by
# On a single GPU xtuner train internlm_7b_qlora_oasst1_e3 # On multiple GPUs (DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm_7b_qlora_oasst1_e3 (SLURM) srun ${SRUN_ARGS} xtuner train internlm_7b_qlora_oasst1_e3 --launcher slurm
For more examples, please see finetune.md.
-
Step 2, convert the saved PTH model (if using DeepSpeed, it will be a directory) to HuggingFace model, by
xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}
XTuner provides tools to chat with pretrained / fine-tuned LLMs.
xtuner chat ${NAME_OR_PATH_TO_LLM} --adapter {NAME_OR_PATH_TO_ADAPTER} [optional arguments]
For example, we can start the chat with Llama2-7b with adapter trained from MOSS-003-SFT by
xtuner chat meta-llama/Llama-2-7b-hf --adapter xtuner/Llama-2-7b-qlora-moss-003-sft --bot-name Llama2 --prompt-template moss_sft --with-plugins calculate solve search --command-stop-word "<eoc>" --answer-stop-word "<eom>" --no-streamer
For more examples, please see chat.md.
-
Step 0, merge the HuggingFace adapter to pretrained LLM, by
xtuner convert merge \ ${NAME_OR_PATH_TO_LLM} \ ${NAME_OR_PATH_TO_ADAPTER} \ ${SAVE_PATH} \ --max-shard-size 2GB
-
Step 1, deploy fine-tuned LLM with any other framework, such as LMDeploy 🚀.
pip install lmdeploy python -m lmdeploy.pytorch.chat ${NAME_OR_PATH_TO_LLM} \ --max_new_tokens 256 \ --temperture 0.8 \ --top_p 0.95 \ --seed 0
🔥 Seeking efficient inference with less GPU memory? Try 4-bit quantization from LMDeploy! For more details, see here.
🎯 We are woking closely with LMDeploy, to implement the deployment of plugin-based chat!
- We recommend using OpenCompass, a comprehensive and systematic LLM evaluation library, which currently supports 50+ datasets with about 300,000 questions.
We appreciate all contributions to XTuner. Please refer to CONTRIBUTING.md for the contributing guideline.
This project is released under the Apache License 2.0. Please also adhere to the Licenses of models and datasets being used.