forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Serving]add ernie-3.0 demo (PaddlePaddle#399)
serving add ernie-3.0 demo
- Loading branch information
Showing
18 changed files
with
1,116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Ernie-3.0 服务化部署示例 | ||
|
||
## 准备模型 | ||
|
||
下载ERNIE 3.0的新闻分类模型、序列标注模型(如果有已训练好的模型,跳过此步骤): | ||
```bash | ||
# 下载并解压新闻分类模型 | ||
wget https://paddlenlp.bj.bcebos.com/models/transformers/ernie_3.0/tnews_pruned_infer_model.zip | ||
unzip tnews_pruned_infer_model.zip | ||
|
||
# 将下载的模型移动到分类任务的模型仓库目录 | ||
mv tnews_pruned_infer_model/float32.pdmodel models/ernie_seqcls_model/1/model.pdmodel | ||
mv tnews_pruned_infer_model/float32.pdiparams models/ernie_seqcls_model/1/model.pdiparams | ||
|
||
# 下载并解压序列标注模型 | ||
wget https://paddlenlp.bj.bcebos.com/models/transformers/ernie_3.0/msra_ner_pruned_infer_model.zip | ||
unzip msra_ner_pruned_infer_model.zip | ||
|
||
# 将下载的模型移动到序列标注任务的模型仓库目录 | ||
mv msra_ner_pruned_infer_model/float32.pdmodel models/ernie_tokencls_model/1/model.pdmodel | ||
mv msra_ner_pruned_infer_model/float32.pdiparams models/ernie_tokencls_model/1/model.pdiparams | ||
``` | ||
|
||
模型下载移动好之后,分类任务的models目录结构如下: | ||
``` | ||
models | ||
├── ernie_seqcls # 分类任务的pipeline | ||
│ ├── 1 | ||
│ └── config.pbtxt # 通过这个文件组合前后处理和模型推理 | ||
├── ernie_seqcls_model # 分类任务的模型推理 | ||
│ ├── 1 | ||
│ │ └── model.onnx | ||
│ └── config.pbtxt | ||
├── ernie_seqcls_postprocess # 分类任务后处理 | ||
│ ├── 1 | ||
│ │ └── model.py | ||
│ └── config.pbtxt | ||
└── ernie_tokenizer # 预处理分词 | ||
├── 1 | ||
│ └── model.py | ||
└── config.pbtxt | ||
``` | ||
|
||
## 拉取并运行镜像 | ||
```bash | ||
# CPU镜像, 仅支持Paddle/ONNX模型在CPU上进行服务化部署,支持的推理后端包括OpenVINO、Paddle Inference和ONNX Runtime | ||
docker pull paddlepaddle/fastdeploy:0.3.0-cpu-only-21.10 | ||
|
||
# GPU 镜像, 支持Paddle/ONNX模型在GPU/CPU上进行服务化部署,支持的推理后端包括OpenVINO、TensorRT、Paddle Inference和ONNX Runtime | ||
docker pull paddlepaddle/fastdeploy:0.3.0-gpu-cuda11.4-trt8.4-21.10 | ||
|
||
# 运行 | ||
docker run -it --net=host --name fastdeploy_server --shm-size="1g" -v /path/serving/models:/models paddlepaddle/fastdeploy:0.3.0-cpu-only-21.10 bash | ||
``` | ||
|
||
## 部署模型 | ||
serving目录包含启动pipeline服务的配置和发送预测请求的代码,包括: | ||
|
||
``` | ||
models # 服务化启动需要的模型仓库,包含模型和服务配置文件 | ||
seq_cls_rpc_client.py # 新闻分类任务发送pipeline预测请求的脚本 | ||
token_cls_rpc_client.py # 序列标注任务发送pipeline预测请求的脚本 | ||
``` | ||
|
||
*注意*:启动服务时,Server的每个python后端进程默认申请`64M`内存,默认启动的docker无法启动多个python后端节点。有两个解决方案: | ||
- 1.启动容器时设置`shm-size`参数, 比如:`docker run -it --net=host --name fastdeploy_server --shm-size="1g" -v /path/serving/models:/models paddlepaddle/fastdeploy:0.3.0-gpu-cuda11.4-trt8.4-21.10 bash` | ||
- 2.启动服务时设置python后端的`shm-default-byte-size`参数, 设置python后端的默认内存为10M: `tritonserver --model-repository=/models --backend-config=python,shm-default-byte-size=10485760` | ||
|
||
### 分类任务 | ||
在容器内执行下面命令启动服务: | ||
``` | ||
# 默认启动models下所有模型 | ||
fastdeployserver --model-repository=/models | ||
# 可通过参数只启动分类任务 | ||
fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=ernie_seqcls | ||
``` | ||
输出打印如下: | ||
``` | ||
I1019 09:41:15.375496 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_tokenizer' version 1 | ||
I1019 09:41:15.375987 2823 model_repository_manager.cc:1022] loading: ernie_seqcls:1 | ||
I1019 09:41:15.477147 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_seqcls' version 1 | ||
I1019 09:41:15.477325 2823 server.cc:522] | ||
... | ||
I0613 08:59:20.577820 10021 server.cc:592] | ||
+----------------------------+---------+--------+ | ||
| Model | Version | Status | | ||
+----------------------------+---------+--------+ | ||
| ernie_seqcls | 1 | READY | | ||
| ernie_seqcls_model | 1 | READY | | ||
| ernie_seqcls_postprocess | 1 | READY | | ||
| ernie_tokenizer | 1 | READY | | ||
+----------------------------+---------+--------+ | ||
... | ||
I0601 07:15:15.923270 8059 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001 | ||
I0601 07:15:15.923604 8059 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000 | ||
I0601 07:15:15.964984 8059 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002 | ||
``` | ||
|
||
### 序列标注任务 | ||
在容器内执行下面命令启动序列标注服务: | ||
``` | ||
fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=ernie_tokencls --backend-config=python,shm-default-byte-size=10485760 | ||
``` | ||
输出打印如下: | ||
``` | ||
I1019 09:41:15.375496 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_tokenizer' version 1 | ||
I1019 09:41:15.375987 2823 model_repository_manager.cc:1022] loading: ernie_seqcls:1 | ||
I1019 09:41:15.477147 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_seqcls' version 1 | ||
I1019 09:41:15.477325 2823 server.cc:522] | ||
... | ||
I0613 08:59:20.577820 10021 server.cc:592] | ||
+----------------------------+---------+--------+ | ||
| Model | Version | Status | | ||
+----------------------------+---------+--------+ | ||
| ernie_tokencls | 1 | READY | | ||
| ernie_tokencls_model | 1 | READY | | ||
| ernie_tokencls_postprocess | 1 | READY | | ||
| ernie_tokenizer | 1 | READY | | ||
+----------------------------+---------+--------+ | ||
... | ||
I0601 07:15:15.923270 8059 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001 | ||
I0601 07:15:15.923604 8059 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000 | ||
I0601 07:15:15.964984 8059 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002 | ||
``` | ||
|
||
## 客户端请求 | ||
客户端请求可以在本地执行脚本请求;也可以在容器中执行。 | ||
|
||
本地执行脚本需要先安装依赖: | ||
``` | ||
pip install grpcio | ||
pip install tritonclient[all] | ||
# 如果bash无法识别括号,可以使用如下指令安装: | ||
pip install tritonclient\[all\] | ||
``` | ||
|
||
### 分类任务 | ||
注意执行客户端请求时关闭代理,并根据实际情况修改main函数中的ip地址(启动服务所在的机器) | ||
``` | ||
python seq_cls_grpc_client.py | ||
``` | ||
输出打印如下: | ||
``` | ||
{'label': array([5, 9]), 'confidence': array([0.6425664 , 0.66534853], dtype=float32)} | ||
{'label': array([4]), 'confidence': array([0.53198355], dtype=float32)} | ||
acc: 0.5731 | ||
``` | ||
|
||
### 序列标注任务 | ||
注意执行客户端请求时关闭代理,并根据实际情况修改main函数中的ip地址(启动服务所在的机器) | ||
``` | ||
python token_cls_grpc_client.py | ||
``` | ||
输出打印如下: | ||
``` | ||
input data: 北京的涮肉,重庆的火锅,成都的小吃都是极具特色的美食。 | ||
The model detects all entities: | ||
entity: 北京 label: LOC pos: [0, 1] | ||
entity: 重庆 label: LOC pos: [6, 7] | ||
entity: 成都 label: LOC pos: [12, 13] | ||
input data: 原产玛雅故国的玉米,早已成为华夏大地主要粮食作物之一。 | ||
The model detects all entities: | ||
entity: 玛雅 label: LOC pos: [2, 3] | ||
entity: 华夏 label: LOC pos: [14, 15] | ||
``` | ||
|
||
## 配置修改 | ||
|
||
当前分类任务(ernie_seqcls_model/config.pbtxt)默认配置在CPU上运行OpenVINO引擎; 序列标注任务默认配置在GPU上运行Paddle引擎。如果要在CPU/GPU或其他推理引擎上运行, 需要修改配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md) |
Empty file.
75 changes: 75 additions & 0 deletions
75
examples/text/ernie-3.0/serving/models/ernie_seqcls/config.pbtxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
name: "ernie_seqcls" | ||
platform: "ensemble" | ||
max_batch_size: 64 | ||
input [ | ||
{ | ||
name: "INPUT" | ||
data_type: TYPE_STRING | ||
dims: [ 1 ] | ||
} | ||
] | ||
output [ | ||
{ | ||
name: "label" | ||
data_type: TYPE_INT64 | ||
dims: [ 1 ] | ||
}, | ||
{ | ||
name: "confidence" | ||
data_type: TYPE_FP32 | ||
dims: [ 1 ] | ||
} | ||
] | ||
ensemble_scheduling { | ||
step [ | ||
{ | ||
model_name: "ernie_tokenizer" | ||
model_version: 1 | ||
input_map { | ||
key: "INPUT_0" | ||
value: "INPUT" | ||
} | ||
output_map { | ||
key: "OUTPUT_0" | ||
value: "tokenizer_input_ids" | ||
} | ||
output_map { | ||
key: "OUTPUT_1" | ||
value: "tokenizer_token_type_ids" | ||
} | ||
}, | ||
{ | ||
model_name: "ernie_seqcls_model" | ||
model_version: 1 | ||
input_map { | ||
key: "input_ids" | ||
value: "tokenizer_input_ids" | ||
} | ||
input_map { | ||
key: "token_type_ids" | ||
value: "tokenizer_token_type_ids" | ||
} | ||
output_map { | ||
key: "linear_113.tmp_1" | ||
value: "OUTPUT_2" | ||
} | ||
}, | ||
{ | ||
model_name: "ernie_seqcls_postprocess" | ||
model_version: 1 | ||
input_map { | ||
key: "POST_INPUT" | ||
value: "OUTPUT_2" | ||
} | ||
output_map { | ||
key: "POST_label" | ||
value: "label" | ||
} | ||
output_map { | ||
key: "POST_confidence" | ||
value: "confidence" | ||
} | ||
} | ||
] | ||
} | ||
|
1 change: 1 addition & 0 deletions
1
examples/text/ernie-3.0/serving/models/ernie_seqcls_model/1/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
本目录存放Ernie-3.0模型 |
42 changes: 42 additions & 0 deletions
42
examples/text/ernie-3.0/serving/models/ernie_seqcls_model/config.pbtxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
backend: "fastdeploy" | ||
max_batch_size: 64 | ||
input [ | ||
{ | ||
name: "input_ids" | ||
data_type: TYPE_INT64 | ||
dims: [ -1 ] | ||
}, | ||
{ | ||
name: "token_type_ids" | ||
data_type: TYPE_INT64 | ||
dims: [ -1 ] | ||
} | ||
] | ||
output [ | ||
{ | ||
name: "linear_113.tmp_1" | ||
data_type: TYPE_FP32 | ||
dims: [ 15 ] | ||
} | ||
] | ||
|
||
instance_group [ | ||
{ | ||
# 创建1个实例 | ||
count: 1 | ||
# 使用CPU推理(KIND_CPU、KIND_GPU) | ||
kind: KIND_CPU | ||
} | ||
] | ||
|
||
optimization { | ||
execution_accelerators { | ||
cpu_execution_accelerator : [ | ||
{ | ||
# use openvino backend | ||
name: "openvino" | ||
parameters { key: "cpu_threads" value: "5" } | ||
} | ||
] | ||
} | ||
} |
Oops, something went wrong.