Skip to content

Commit

Permalink
[Serving]add ernie-3.0 demo (PaddlePaddle#399)
Browse files Browse the repository at this point in the history
serving add ernie-3.0 demo
  • Loading branch information
heliqi authored Oct 20, 2022
1 parent f450917 commit 587ffd4
Show file tree
Hide file tree
Showing 18 changed files with 1,116 additions and 0 deletions.
171 changes: 171 additions & 0 deletions examples/text/ernie-3.0/serving/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
# Ernie-3.0 服务化部署示例

## 准备模型

下载ERNIE 3.0的新闻分类模型、序列标注模型(如果有已训练好的模型,跳过此步骤):
```bash
# 下载并解压新闻分类模型
wget https://paddlenlp.bj.bcebos.com/models/transformers/ernie_3.0/tnews_pruned_infer_model.zip
unzip tnews_pruned_infer_model.zip

# 将下载的模型移动到分类任务的模型仓库目录
mv tnews_pruned_infer_model/float32.pdmodel models/ernie_seqcls_model/1/model.pdmodel
mv tnews_pruned_infer_model/float32.pdiparams models/ernie_seqcls_model/1/model.pdiparams

# 下载并解压序列标注模型
wget https://paddlenlp.bj.bcebos.com/models/transformers/ernie_3.0/msra_ner_pruned_infer_model.zip
unzip msra_ner_pruned_infer_model.zip

# 将下载的模型移动到序列标注任务的模型仓库目录
mv msra_ner_pruned_infer_model/float32.pdmodel models/ernie_tokencls_model/1/model.pdmodel
mv msra_ner_pruned_infer_model/float32.pdiparams models/ernie_tokencls_model/1/model.pdiparams
```

模型下载移动好之后,分类任务的models目录结构如下:
```
models
├── ernie_seqcls # 分类任务的pipeline
│   ├── 1
│   └── config.pbtxt # 通过这个文件组合前后处理和模型推理
├── ernie_seqcls_model # 分类任务的模型推理
│   ├── 1
│   │   └── model.onnx
│   └── config.pbtxt
├── ernie_seqcls_postprocess # 分类任务后处理
│   ├── 1
│   │   └── model.py
│   └── config.pbtxt
└── ernie_tokenizer # 预处理分词
├── 1
│   └── model.py
└── config.pbtxt
```

## 拉取并运行镜像
```bash
# CPU镜像, 仅支持Paddle/ONNX模型在CPU上进行服务化部署,支持的推理后端包括OpenVINO、Paddle Inference和ONNX Runtime
docker pull paddlepaddle/fastdeploy:0.3.0-cpu-only-21.10

# GPU 镜像, 支持Paddle/ONNX模型在GPU/CPU上进行服务化部署,支持的推理后端包括OpenVINO、TensorRT、Paddle Inference和ONNX Runtime
docker pull paddlepaddle/fastdeploy:0.3.0-gpu-cuda11.4-trt8.4-21.10

# 运行
docker run -it --net=host --name fastdeploy_server --shm-size="1g" -v /path/serving/models:/models paddlepaddle/fastdeploy:0.3.0-cpu-only-21.10 bash
```

## 部署模型
serving目录包含启动pipeline服务的配置和发送预测请求的代码,包括:

```
models # 服务化启动需要的模型仓库,包含模型和服务配置文件
seq_cls_rpc_client.py # 新闻分类任务发送pipeline预测请求的脚本
token_cls_rpc_client.py # 序列标注任务发送pipeline预测请求的脚本
```

*注意*:启动服务时,Server的每个python后端进程默认申请`64M`内存,默认启动的docker无法启动多个python后端节点。有两个解决方案:
- 1.启动容器时设置`shm-size`参数, 比如:`docker run -it --net=host --name fastdeploy_server --shm-size="1g" -v /path/serving/models:/models paddlepaddle/fastdeploy:0.3.0-gpu-cuda11.4-trt8.4-21.10 bash`
- 2.启动服务时设置python后端的`shm-default-byte-size`参数, 设置python后端的默认内存为10M: `tritonserver --model-repository=/models --backend-config=python,shm-default-byte-size=10485760`

### 分类任务
在容器内执行下面命令启动服务:
```
# 默认启动models下所有模型
fastdeployserver --model-repository=/models
# 可通过参数只启动分类任务
fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=ernie_seqcls
```
输出打印如下:
```
I1019 09:41:15.375496 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_tokenizer' version 1
I1019 09:41:15.375987 2823 model_repository_manager.cc:1022] loading: ernie_seqcls:1
I1019 09:41:15.477147 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_seqcls' version 1
I1019 09:41:15.477325 2823 server.cc:522]
...
I0613 08:59:20.577820 10021 server.cc:592]
+----------------------------+---------+--------+
| Model | Version | Status |
+----------------------------+---------+--------+
| ernie_seqcls | 1 | READY |
| ernie_seqcls_model | 1 | READY |
| ernie_seqcls_postprocess | 1 | READY |
| ernie_tokenizer | 1 | READY |
+----------------------------+---------+--------+
...
I0601 07:15:15.923270 8059 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
I0601 07:15:15.923604 8059 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
I0601 07:15:15.964984 8059 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
```

### 序列标注任务
在容器内执行下面命令启动序列标注服务:
```
fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=ernie_tokencls --backend-config=python,shm-default-byte-size=10485760
```
输出打印如下:
```
I1019 09:41:15.375496 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_tokenizer' version 1
I1019 09:41:15.375987 2823 model_repository_manager.cc:1022] loading: ernie_seqcls:1
I1019 09:41:15.477147 2823 model_repository_manager.cc:1183] successfully loaded 'ernie_seqcls' version 1
I1019 09:41:15.477325 2823 server.cc:522]
...
I0613 08:59:20.577820 10021 server.cc:592]
+----------------------------+---------+--------+
| Model | Version | Status |
+----------------------------+---------+--------+
| ernie_tokencls | 1 | READY |
| ernie_tokencls_model | 1 | READY |
| ernie_tokencls_postprocess | 1 | READY |
| ernie_tokenizer | 1 | READY |
+----------------------------+---------+--------+
...
I0601 07:15:15.923270 8059 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
I0601 07:15:15.923604 8059 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
I0601 07:15:15.964984 8059 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
```

## 客户端请求
客户端请求可以在本地执行脚本请求;也可以在容器中执行。

本地执行脚本需要先安装依赖:
```
pip install grpcio
pip install tritonclient[all]
# 如果bash无法识别括号,可以使用如下指令安装:
pip install tritonclient\[all\]
```

### 分类任务
注意执行客户端请求时关闭代理,并根据实际情况修改main函数中的ip地址(启动服务所在的机器)
```
python seq_cls_grpc_client.py
```
输出打印如下:
```
{'label': array([5, 9]), 'confidence': array([0.6425664 , 0.66534853], dtype=float32)}
{'label': array([4]), 'confidence': array([0.53198355], dtype=float32)}
acc: 0.5731
```

### 序列标注任务
注意执行客户端请求时关闭代理,并根据实际情况修改main函数中的ip地址(启动服务所在的机器)
```
python token_cls_grpc_client.py
```
输出打印如下:
```
input data: 北京的涮肉,重庆的火锅,成都的小吃都是极具特色的美食。
The model detects all entities:
entity: 北京 label: LOC pos: [0, 1]
entity: 重庆 label: LOC pos: [6, 7]
entity: 成都 label: LOC pos: [12, 13]
input data: 原产玛雅故国的玉米,早已成为华夏大地主要粮食作物之一。
The model detects all entities:
entity: 玛雅 label: LOC pos: [2, 3]
entity: 华夏 label: LOC pos: [14, 15]
```

## 配置修改

当前分类任务(ernie_seqcls_model/config.pbtxt)默认配置在CPU上运行OpenVINO引擎; 序列标注任务默认配置在GPU上运行Paddle引擎。如果要在CPU/GPU或其他推理引擎上运行, 需要修改配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
Empty file.
75 changes: 75 additions & 0 deletions examples/text/ernie-3.0/serving/models/ernie_seqcls/config.pbtxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
name: "ernie_seqcls"
platform: "ensemble"
max_batch_size: 64
input [
{
name: "INPUT"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [
{
name: "label"
data_type: TYPE_INT64
dims: [ 1 ]
},
{
name: "confidence"
data_type: TYPE_FP32
dims: [ 1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "ernie_tokenizer"
model_version: 1
input_map {
key: "INPUT_0"
value: "INPUT"
}
output_map {
key: "OUTPUT_0"
value: "tokenizer_input_ids"
}
output_map {
key: "OUTPUT_1"
value: "tokenizer_token_type_ids"
}
},
{
model_name: "ernie_seqcls_model"
model_version: 1
input_map {
key: "input_ids"
value: "tokenizer_input_ids"
}
input_map {
key: "token_type_ids"
value: "tokenizer_token_type_ids"
}
output_map {
key: "linear_113.tmp_1"
value: "OUTPUT_2"
}
},
{
model_name: "ernie_seqcls_postprocess"
model_version: 1
input_map {
key: "POST_INPUT"
value: "OUTPUT_2"
}
output_map {
key: "POST_label"
value: "label"
}
output_map {
key: "POST_confidence"
value: "confidence"
}
}
]
}

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
本目录存放Ernie-3.0模型
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
backend: "fastdeploy"
max_batch_size: 64
input [
{
name: "input_ids"
data_type: TYPE_INT64
dims: [ -1 ]
},
{
name: "token_type_ids"
data_type: TYPE_INT64
dims: [ -1 ]
}
]
output [
{
name: "linear_113.tmp_1"
data_type: TYPE_FP32
dims: [ 15 ]
}
]

instance_group [
{
# 创建1个实例
count: 1
# 使用CPU推理(KIND_CPU、KIND_GPU)
kind: KIND_CPU
}
]

optimization {
execution_accelerators {
cpu_execution_accelerator : [
{
# use openvino backend
name: "openvino"
parameters { key: "cpu_threads" value: "5" }
}
]
}
}
Loading

0 comments on commit 587ffd4

Please sign in to comment.