Skip to content

Commit

Permalink
[Bug Fix] change reused_input_tensors&&reused_output_tensors name (Pa…
Browse files Browse the repository at this point in the history
…ddlePaddle#534)

* add paddle_trt in benchmark

* update benchmark in device

* update benchmark

* update result doc

* fixed for CI

* update python api_docs

* update index.rst

* add runtime cpp examples

* deal with comments

* Update infer_paddle_tensorrt.py

* Add runtime quick start

* deal with comments

* fixed reused_input_tensors&&reused_output_tensors

Co-authored-by: Jason <[email protected]>
  • Loading branch information
wjj19950828 and jiangjiajun authored Nov 8, 2022
1 parent 6962921 commit d259952
Show file tree
Hide file tree
Showing 17 changed files with 247 additions and 64 deletions.
14 changes: 14 additions & 0 deletions examples/runtime/README.md
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,5 +1,9 @@
# FastDeploy Runtime examples

FastDeploy Runtime C++ 推理示例如下

## Python 示例

| Example Code | Program Language | Description |
| :------- | :------- | :---- |
| python/infer_paddle_paddle_inference.py | Python | Deploy Paddle model with Paddle Inference(CPU/GPU) |
Expand All @@ -8,9 +12,19 @@
| python/infer_paddle_onnxruntime.py | Python | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
| python/infer_onnx_openvino.py | Python | Deploy ONNX model with OpenVINO(CPU) |
| python/infer_onnx_tensorrt.py | Python | Deploy ONNX model with TensorRT(GPU) |

## C++ 示例

| Example Code | Program Language | Description |
| :------- | :------- | :---- |
| cpp/infer_paddle_paddle_inference.cc | C++ | Deploy Paddle model with Paddle Inference(CPU/GPU) |
| cpp/infer_paddle_tensorrt.cc | C++ | Deploy Paddle model with TensorRT(GPU) |
| cpp/infer_paddle_openvino.cc | C++ | Deploy Paddle model with OpenVINO(CPU |
| cpp/infer_paddle_onnxruntime.cc | C++ | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
| cpp/infer_onnx_openvino.cc | C++ | Deploy ONNX model with OpenVINO(CPU) |
| cpp/infer_onnx_tensorrt.cc | C++ | Deploy ONNX model with TensorRT(GPU) |

## 详细部署文档

- [Python部署](python)
- [C++部署](cpp)
121 changes: 121 additions & 0 deletions examples/runtime/cpp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# C++推理

在运行demo前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例

## 1. 获取模型

```bash
wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
tar xvf mobilenetv2.tgz
```

## 2. 配置后端

如下C++代码保存为`infer_paddle_onnxruntime.cc`

``` c++
#include "fastdeploy/runtime.h"

namespace fd = fastdeploy;

int main(int argc, char* argv[]) {
std::string model_file = "mobilenetv2/inference.pdmodel";
std::string params_file = "mobilenetv2/inference.pdiparams";

// setup option
fd::RuntimeOption runtime_option;
runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
runtime_option.UseOrtBackend();
runtime_option.SetCpuThreadNum(12);
// init runtime
std::unique_ptr<fd::Runtime> runtime =
std::unique_ptr<fd::Runtime>(new fd::Runtime());
if (!runtime->Init(runtime_option)) {
std::cerr << "--- Init FastDeploy Runitme Failed! "
<< "\n--- Model: " << model_file << std::endl;
return -1;
} else {
std::cout << "--- Init FastDeploy Runitme Done! "
<< "\n--- Model: " << model_file << std::endl;
}
// init input tensor shape
fd::TensorInfo info = runtime->GetInputInfo(0);
info.shape = {1, 3, 224, 224};

std::vector<fd::FDTensor> input_tensors(1);
std::vector<fd::FDTensor> output_tensors(1);

std::vector<float> inputs_data;
inputs_data.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data.size(); ++i) {
inputs_data[i] = std::rand() % 1000 / 1000.0f;
}
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());

//get input name
input_tensors[0].name = info.name;

runtime->Infer(input_tensors, &output_tensors);

output_tensors[0].PrintInfo();
return 0;
}
```
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
```
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
```

## 3. 准备CMakeLists.txt

FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,

```cmake
PROJECT(runtime_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
# 添加FastDeploy库依赖
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
```

## 4. 编译可执行程序

打开命令行终端,进入`infer_paddle_onnxruntime.cc``CMakeLists.txt`所在的目录,执行如下命令

```bash
mkdir build & cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
make -j
```

```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径

编译完成后,使用如下命令执行可得到预测结果
```bash
./runtime_demo
```
执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。
```bash
source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
```

本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)

## 其它文档

- [Runtime Python 示例](../python)
- [切换模型推理的硬件和后端](../../../../../docs/cn/faq/how_to_change_backend.md)
53 changes: 53 additions & 0 deletions examples/runtime/python/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Python推理

在运行demo前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

本文档以 PaddleClas 分类模型 MobileNetV2 为例展示 CPU 上的推理示例

## 1. 获取模型

``` python
import fastdeploy as fd

model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")
```

## 2. 配置后端

``` python
option = fd.RuntimeOption()

option.set_model_path("mobilenetv2/inference.pdmodel",
"mobilenetv2/inference.pdiparams")

# **** CPU 配置 ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)

# 初始化构造runtime
runtime = fd.Runtime(option)

# 获取模型输入名
input_name = runtime.get_input_info(0).name

# 构造随机数据进行推理
results = runtime.infer({
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})

print(results[0].shape)
```
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
```
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
```

## 其它文档

- [Runtime C++ 示例](../cpp)
- [切换模型推理的硬件和后端](../../../../../docs/cn/faq/how_to_change_backend.md)
2 changes: 0 additions & 2 deletions examples/vision/classification/yolov5cls/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,6 @@
| [YOLOv5x-cls](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x-cls.onnx) | 184MB | 79.0% | 94.4% |




## 详细部署文档

- [Python部署](python)
Expand Down
2 changes: 1 addition & 1 deletion fastdeploy/fastdeploy_model.cc
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ bool FastDeployModel::Infer(std::vector<FDTensor>& input_tensors,
}

bool FastDeployModel::Infer() {
return Infer(reused_input_tensors, &reused_output_tensors);
return Infer(reused_input_tensors_, &reused_output_tensors_);
}

std::map<std::string, float> FastDeployModel::PrintStatisInfoOfRuntime() {
Expand Down
19 changes: 8 additions & 11 deletions fastdeploy/fastdeploy_model.h
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ class FASTDEPLOY_DECL FastDeployModel {
virtual bool Infer(std::vector<FDTensor>& input_tensors,
std::vector<FDTensor>* output_tensors);

/** \brief Inference the model by the runtime. This interface is using class member reused_input_tensors to do inference and writing results to reused_output_tensors
/** \brief Inference the model by the runtime. This interface is using class member reused_input_tensors_ to do inference and writing results to reused_output_tensors_
*/
virtual bool Infer();

Expand Down Expand Up @@ -107,17 +107,10 @@ class FASTDEPLOY_DECL FastDeployModel {
/** \brief Release reused input/output buffers
*/
virtual void ReleaseReusedBuffer() {
std::vector<FDTensor>().swap(reused_input_tensors);
std::vector<FDTensor>().swap(reused_output_tensors);
std::vector<FDTensor>().swap(reused_input_tensors_);
std::vector<FDTensor>().swap(reused_output_tensors_);
}

/** \brief Reused input tensors
*/
std::vector<FDTensor> reused_input_tensors;
/** \brief Reused output tensors
*/
std::vector<FDTensor> reused_output_tensors;

protected:
virtual bool InitRuntime();
virtual bool CreateCpuBackend();
Expand All @@ -126,7 +119,11 @@ class FASTDEPLOY_DECL FastDeployModel {
virtual bool CreateRKNPUBackend();

bool initialized = false;
std::vector<Backend> valid_external_backends;
std::vector<Backend> valid_external_backends_;
// Reused input tensors
std::vector<FDTensor> reused_input_tensors_;
// Reused output tensors
std::vector<FDTensor> reused_output_tensors_;

private:
std::shared_ptr<Runtime> runtime_;
Expand Down
8 changes: 4 additions & 4 deletions fastdeploy/vision/classification/ppcls/model.cc
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -60,18 +60,18 @@ bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {

bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images, std::vector<ClassifyResult>* results) {
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors)) {
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}

reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors, &reused_output_tensors)) {
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}

if (!postprocessor_.Run(reused_output_tensors, results)) {
if (!postprocessor_.Run(reused_output_tensors_, results)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
Expand Down
8 changes: 4 additions & 4 deletions fastdeploy/vision/detection/contrib/scaledyolov4.cc
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ bool ScaledYOLOv4::Initialize() {
is_scale_up = false;
stride = 32;
max_wh = 7680.0;
reused_input_tensors.resize(1);
reused_input_tensors_.resize(1);

if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
Expand Down Expand Up @@ -230,17 +230,17 @@ bool ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result,
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};

if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}

reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer()) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
Expand Down
8 changes: 4 additions & 4 deletions fastdeploy/vision/detection/contrib/yolor.cc
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ bool YOLOR::Initialize() {
is_scale_up = false;
stride = 32;
max_wh = 7680.0;
reused_input_tensors.resize(1);
reused_input_tensors_.resize(1);

if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
Expand Down Expand Up @@ -227,18 +227,18 @@ bool YOLOR::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};

if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}

reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer()) {
FDERROR << "Failed to inference." << std::endl;
return false;
}

if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
Expand Down
10 changes: 5 additions & 5 deletions fastdeploy/vision/detection/contrib/yolov5.cc
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ bool YOLOv5::Initialize() {
stride_ = 32;
max_wh_ = 7680.0;
multi_label_ = true;
reused_input_tensors.resize(1);
reused_input_tensors_.resize(1);

if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
Expand Down Expand Up @@ -350,28 +350,28 @@ bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
std::map<std::string, std::array<float, 2>> im_info;

if (use_cuda_preprocessing_) {
if (!CudaPreprocess(&mat, &reused_input_tensors[0], &im_info, size_,
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info, size_,
padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_,
stride_, max_wh_, multi_label_)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
} else {
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info, size_,
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info, size_,
padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_,
stride_, max_wh_, multi_label_)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}

reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer()) {
FDERROR << "Failed to inference." << std::endl;
return false;
}

if (!Postprocess(reused_output_tensors, result, im_info, conf_threshold,
if (!Postprocess(reused_output_tensors_, result, im_info, conf_threshold,
nms_iou_threshold, multi_label_)) {
FDERROR << "Failed to post process." << std::endl;
return false;
Expand Down
Loading

0 comments on commit d259952

Please sign in to comment.