Dataset and code for our Pattern-Recognition paper: 《A Coarse-to-Fine Approach for Dynamic-to-static Image Transformation》
- Install Torch (tested on 1.2.0)
-
Synthetic Dataset: EmptyCities (for train, test and validation)
this dataset is generated with CARLA 0.8.2 by Berta et al. in IEEE TRO2020 Paper;
and it is available in this link;
how to generate dataset by CARLA could be found here;
-
Synthetic Dataset: New (with large dynamic rate range!!)
this dataset is generated with CARLA 0.8.2 by us for further evaluation; and it is available in this link;
- First step: train coarse network
python train.py --gpu_ids 0 --batchSize 4 --netG unet_256 --netD basic
--mode Coarse --name CoarseNet_unet8_load400
- Second step: end-to-end train coarse-to-fine network
python train.py --gpu_ids 0 --batchSize 4 --netG Coarse2fineNet --netD SA
--mode Coarse2fine --name Coarse2fineNet_unet8_1206
- Visualization on TensorBoard for training is supported.
tensorboard --logdir model_logs --port 6006
- test coarse network
python test.py --phase test --gpu_ids 0 --eval --no_flip --netG unet_256
--mode Coarse --name CoarseNet_unet8_load400 --which_epoch 21
- test coarse2fine network
python test.py --phase test --gpu_ids 0 --eval --no_flip --netG Coarse2fineNet
--mode Coarse2fine --name Coarse2fineNet_unet8_1206 --which_epoch 42
- load pretrained model (i.e. which epoch) on CARLA synthetic dataset, then continue train from next one epoch by an appropriate learning rate on Cityscapes Dataset.
python train.py --gpu_ids 0 --batchSize 1 --lr 0.0001 --netG Coarse2fineNet --netD SA
--mode Transfer --name transferModel_0614 --continue_train --which_epoch 42 --epoch_count 43
- test
python test.py --phase val --gpu_ids 0 --eval --no_flip --netG Coarse2fineNet
--mode Transfer --name transferModel_0614 --which_epoch 42
Related Resource in my BaiduCloud(Extraction-code:5250)
@article{WANG2022108373,
title = {A coarse-to-fine approach for dynamic-to-static image translation},
journal = {Pattern Recognition},
volume = {123},
pages = {108373},
year = {2022},
issn = {0031-3203},
doi = {https://doi.org/10.1016/j.patcog.2021.108373},
url = {https://www.sciencedirect.com/science/article/pii/S0031320321005537},
author = {Teng Wang and Lin Wu and Changyin Sun},
.
-
Postgraduate Research&Practice Innovation Program of Jiangsu Province (SJCX20_0035)