Skip to content
/ dmrgpy Public
forked from joselado/dmrgpy

DMRGPy is a Python library to compute quasi-one-dimensional spin chains and fermionic systems using matrix product states with DMRG as implemented in ITensor. Most of the computations can be performed both with DMRG and exact diagonalization for small systems, which allows one to benchmark the results.

License

GPL-3.0, Unknown licenses found

Licenses found

GPL-3.0
LICENSE.md
Unknown
COPYING.md
Notifications You must be signed in to change notification settings

fiktor/dmrgpy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DMRGPY

Summary

This is a Python library to compute quasi-one-dimensional spin chains and fermionic systems using matrix product states with the density matrix renormalization group as implemented in ITensor (C++ and Julia versions). Most of the computations can be performed both with DMRG and exact diagonalization for small systems, which allows to benchmark the results.

Several examples can be found in the examples folder.

Disclaimer

This library is still under heavy development.

How to install

Linux and Mac

Execute the script

python install.py 

and it will compile both ITensor and a C++ program that uses it.

If your default C++ compiler is not g++ (version 6 or higher), execute the installation script providing the specific compiler to use (g++-6 for example)

python install.py gpp=g++-6 

Alternatively, in case you just want to use the Julia version, execute the script

python install_julia.py

The installation scripts will also add dmrgpy to the PYTHONPATH of the python interpreter you used to execute them.

Afterwards you can import the dmrgpy sublibrary that you want, for example

from dmrgpy import spinchain

Windows

For using this program in Windows, the easiest solution is to create a virtual machine using Virtual Box, installing a version of Ubuntu in that virtual machine, and following the previous instructions.

Capabilities

  • Possible models include spinless fermions, spinful fermions, spins, parafermions and bosons
  • Ground state energy
  • Ground state wavefunction
  • Excitation energies
  • Excited wavefunctions
  • Arbitrary expectation values, including static correlation functions
  • Time evolution of arbitrary states
  • MPS algebra: sum of MPS, application of operators, exponential and inverse
  • MPO algebra: sums, products, trace, trace of inverse for generic operators
  • Dynamical correlation functions computed with the Kernel polynomial method
  • Dynamical correlation functions with time dependent DMRG
  • Generic operator distributions computed with the Kernel polynomial method
  • Iterative MPS Hermitian and non-Hermitian diagonalization solvers
  • Hermitian and non-Hermitian degeneracy detection

Examples

Ground state energy of an S=1/2 spin chain

from dmrgpy import spinchain
spins = ["S=1/2" for i in range(30)] # spins in each site
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1): 
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h) # create the Hamiltonian
print("Ground state energy",sc.gs_energy())

Static correlator of an S=1/2 spin chain

from dmrgpy import spinchain
n = 30
spins = ["S=1/2" for i in range(n)] # S=1 in each site
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1):
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h) # create the Hamiltonian
cs = [sc.vev(sc.Sz[0]*sc.Sz[i]).real for i in range(n)]

Alt text

Static correlator of an S=1 spin chain

from dmrgpy import spinchain
n = 30
spins = ["S=1" for i in range(n)] # S=1 in each site
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1): 
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h) # create the Hamiltonian
cs = [sc.vev(sc.Sz[0]*sc.Sz[i]).real for i in range(n)]

Alt text

Conformal field theory central charge of a critical Ising model

from dmrgpy import spinchain
n = 100 # number of sites
spins = ["S=1/2" for i in range(n)] # spin 1/2 heisenberg chain
sc = spinchain.Spin_Chain(spins) # create the spin chain
h = 0 # initialize
for i in range(n-1): h = h + sc.Sz[i]*sc.Sz[i+1] # Ising coupling
for i in range(n): h = h + 0.5*sc.Sx[i] # transverse field
sc.set_hamiltonian(h) # set the Hamiltonian
sc.maxm = 200 # increase bond dimension for a critical system
wf = sc.get_gs() # compute ground state
print("Central charge",wf.get_CFT_central_charge()) # compute central charge

Ground state energy of a bilinear-biquadratic Hamiltonian

from dmrgpy import spinchain
ns = 6 # number of sites in the spin chain
spins = ["S=1" for i in range(ns)] # S=1 chain
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
Si = [sc.Sx,sc.Sy,sc.Sz] # store the three components
for i in range(ns-1): # loop 
    for S in Si: h = h + S[i]*S[i+1]  # bilinear
    for S in Si: h = h + 1./3.*S[i]*S[i+1]*S[i]*S[i+1]  # biquadratic
sc.set_hamiltonian(h) # create the Hamiltonian
print("Energy with DMRG",sc.gs_energy(mode="DMRG"))
print("Energy with ED",sc.gs_energy(mode="ED"))

Magnetization of an S=1 spin chain with an edge magnetic field

from dmrgpy import spinchain
n = 40
spins = ["S=1" for i in range(n)] # S=1 chain
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1): 
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
h = h + sc.Sz[0]*0.1 # edge magnetic field
sc.set_hamiltonian(h) # create the Hamiltonian
mz = [sc.vev(sc.Sz[i]).real for i in range(n)]
print("Mz",mz)

Bond dimension energy convergence for an S=1/2 Heisenberg chain

from dmrgpy import spinchain
import numpy as np
n= 30 # size of the chain
spins = ["S=1/2" for i in range(n)] # S=1/2 chain
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1):
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
bds = range(3,20,2) # bond dimension
es,des = [],[] # storage of energies and fluctuations
for maxm in bds: # loop over bond dimension
  sc.set_hamiltonian(h) # create the Hamiltonian
  sc.maxm = maxm # set the bond dimension
  e = sc.gs_energy() # get the ground state energy
  wf = sc.get_gs() ; de = wf.dot(h*(h*wf)) # Energy square
  de = np.sqrt(np.abs(de-e**2)) # energy fluctuation
  es.append(e/n) # store energy
  des.append(de/n) # energy fluctuation

Alt text

Excited states with DMRG and ED

from dmrgpy import spinchain
spins = ["S=1/2" for i in range(12)] # 2*S+1=2 for S=1/2
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1): 
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
es1 = sc.get_excited(n=6,mode="DMRG")
es2 = sc.get_excited(n=6,mode="ED")
print("Excited states with DMRG",es1)
print("Excited states with ED",es2)

Singlet-triplet gap of the Haldane Heisenberg S=1 spin chain

from dmrgpy import spinchain
# Haldane chain with S=1/2 on the edge to remove the topological modes
spins = ["S=1/2"]+["S=1" for i in range(40)]+["S=1/2"]
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1): 
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
es = sc.get_excited(n=2,mode="DMRG")
gap = es[1]-es[0] # compute gap
print("Gap of the Haldane chain",gap)

Local dynamical spin correlator of an S=1/2 chain

import numpy as np
from dmrgpy import spinchain
n = 40
# create an S=1/2 spin chain
spins = ["S=1/2" for i in range(n)] # spin 1/2 heisenberg chain
# create first neighbor exchange
sc = spinchain.Spin_Chain(spins) # create the spin chain
h = 0
for i in range(n-1):
    h = h + sc.Sx[i]*sc.Sx[i+1]
    h = h + sc.Sy[i]*sc.Sy[i+1]
    h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
zs = [] # empty list
for i in range(n): # loop over sites
  name = (sc.Sz[i],sc.Sz[i])
  (e,s) = sc.get_dynamical_correlator(mode="DMRG",name=name,
          es=np.linspace(-0.5,4.0,200),delta=0.05)
  zs.append(s) # store

Alt text

Local dynamical spin correlator of an S=1 chain

import numpy as np
from dmrgpy import spinchain
n = 40
# create an S=1/2 spin chain
spins = ["S=1" for i in range(n)] # spin 1/2 heisenberg chain
# create first neighbor exchange
sc = spinchain.Spin_Chain(spins) # create the spin chain
h = 0
for i in range(n-1):
    h = h + sc.Sx[i]*sc.Sx[i+1]
    h = h + sc.Sy[i]*sc.Sy[i+1]
    h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
zs = [] # empty list
for i in range(n): # loop over sites
  name = (sc.Sz[i],sc.Sz[i])
  (e,s) = sc.get_dynamical_correlator(mode="DMRG",name=name,
          es=np.linspace(-0.5,4.0,200),delta=0.05)
  zs.append(s) # store

Alt text

Local dynamical spin correlator of an S=1/2 chain with a S=1 impurity

import numpy as np
from dmrgpy import spinchain
spins = ["S=1/2" for i in range(14)] # spin 1/2 heisenberg chain
spins = spins + ["S=1"] + spins # put S=1 in the middle
n = len(spins) # total number of spins
# create first neighbor exchange
sc = spinchain.Spin_Chain(spins) # create the spin chain
h = 0
for i in range(n-1):
    h = h + sc.Sx[i]*sc.Sx[i+1]
    h = h + sc.Sy[i]*sc.Sy[i+1]
    h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
zs = [] # empty list
for i in range(n): # loop over sites
  name = (sc.Sz[i],sc.Sz[i])
  (e,s) = sc.get_dynamical_correlator(mode="DMRG",name=name,
          es=np.linspace(-0.5,4.0,200),delta=0.05)
  zs.append(s.real) # store

Alt text

Non-local dynamical spin correlator of an S=1/2 chain

import numpy as np
from dmrgpy import spinchain
n = 10
# create an S=1/2 spin chain
spins = ["S=1/2" for i in range(n)] # spin 1/2 heisenberg chain
# create first neighbor exchange
sc = spinchain.Spin_Chain(spins) # create the spin chain
h = 0
for i in range(n-1):
    h = h + sc.Sx[i]*sc.Sx[i+1]
    h = h + sc.Sy[i]*sc.Sy[i+1]
    h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
xs = [] # empty list
ys = [] # empty list
zs = [] # empty list
for i in range(n): # loop over sites
  name = (sc.Sz[0],sc.Sz[i])
  (e,s) = sc.get_dynamical_correlator(mode="DMRG",name=name,
          es=np.linspace(-0.5,4.0,200),delta=0.05)
  zs.append(s) # store

Alt text

Bulk and edge dynamical correlator of a Haldane chain

from dmrgpy import spinchain
n = 20 ; spins = ["S=1" for i in range(n)] # S=1 chain
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1):
  h = h + sc.Sx[i]*sc.Sx[i+1]
  h = h + sc.Sy[i]*sc.Sy[i+1]
  h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
(e0,d0) = sc.get_dynamical_correlator(name=(sc.Sz[0],sc.Sz[0]))
(eb,db) = sc.get_dynamical_correlator(name=(sc.Sz[n//2],sc.Sz[n//2]))

Alt text

Spin and charge correlator of the 1D Hubbard model

from dmrgpy import fermionchain
n = 20 # number of sites
fc = fermionchain.Spinful_Fermionic_Chain(n)
# first neighbor hopping
h = 0
for i in range(n-1):
  h = h + fc.Cdagup[i]*fc.Cup[i+1]
  h = h + fc.Cdagdn[i]*fc.Cdn[i+1]
h = h + h.get_dagger() # Make Hermitian
# Hubbard term
for i in range(n):
  h = h + 4.*(fc.Nup[i]-.5)*(fc.Ndn[i]-.5)
fc.set_hamiltonian(h) # initialize the Hamiltonian
# compute the two correlators
zz = [fc.vev(fc.Sz[0]*fc.Sz[i]).real for i in range(n)]
cc = [fc.vev(fc.Cdagup[0]*fc.Cup[i]).real for i in range(n)]

Alt text

Spin correlator in the Hubbard model as function of the interaction

from dmrgpy import fermionchain
import numpy as np
n = 14 # number of sites
fc = fermionchain.Spinful_Fermionic_Chain(n)
# first neighbor hopping
h = 0
for i in range(n-1):
  h = h + fc.Cdagup[i]*fc.Cup[i+1]
  h = h + fc.Cdagdn[i]*fc.Cdn[i+1]
h = h + h.get_dagger() # Make Hermitian
# Hubbard term
hU = 0
for i in range(n):
  hU = hU + (fc.Nup[i]-.5)*(fc.Ndn[i]-.5)

zzs = [] # storage for correlators
Us = np.linspace(0.,4.,6) # Hubbard Us 
for U in Us:
  fc.set_hamiltonian(h+U*hU) # initialize the Hamiltonian
  zz = [fc.vev(fc.Sz[0]*fc.Sz[i]).real for i in range(n)]
  zzs.append(zz) # store zz correlator

Alt text

Generic interacting fermionic Hamiltonian

import numpy as np
from dmrgpy import fermionchain
n = 6 # number of different spinless fermionic orbitals
# fc is an object that contains the information of the many body system
fc = fermionchain.Fermionic_Chain(n) # create the object
h = 0
# create random hoppings
for i in range(n):
  for j in range(i):
    h = h + fc.Cdag[i]*fc.C[j]*np.random.random()
# create random density interactions
for i in range(n):
  for j in range(i):
    h = h + fc.N[i]*fc.N[j]*np.random.random()
h = h + h.get_dagger() # make the Hamiltonian Hermitian
fc.set_hamiltonian(h) # set the Hamiltonian in the object
print("GS energy with ED",fc.gs_energy(mode="ED")) # energy with exact diag
print("GS energy with DMRG",fc.gs_energy(mode="DMRG")) # energy with DMRG

Choosing between the C++ and Julia backend

The library uses ITensor in the background. Currently dmrgpy allows to choose between ITensor2 (C++), or ITensors (Julia). The default version executed is the the C++ v2 version, if you want to instead use the Julia version execute the method ".setup_julia()", for example

from dmrgpy import spinchain
spins = ["S=1/2" for i in range(30)] # spins in each site
sc = spinchain.Spin_Chain(spins) # create spin chain object
sc.setup_julia()

and all the subsequent computations will be performed with Julia

License

The project is available under GPL-3.0-or-later license. See COPYING.md for more details.

About

DMRGPy is a Python library to compute quasi-one-dimensional spin chains and fermionic systems using matrix product states with DMRG as implemented in ITensor. Most of the computations can be performed both with DMRG and exact diagonalization for small systems, which allows one to benchmark the results.

Resources

License

GPL-3.0, Unknown licenses found

Licenses found

GPL-3.0
LICENSE.md
Unknown
COPYING.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 74.0%
  • Python 16.8%
  • C 7.6%
  • Makefile 1.0%
  • Julia 0.6%
  • Shell 0.0%