Android VAD library is designed to process audio in real-time and identify presence of human speech in audio samples that contain a mixture of speech and noise. The VAD functionality operates offline, performing all processing tasks directly on the mobile device.
The repository offers three distinct models for voice activity detection:
WebRTC VAD [1] is based on a Gaussian Mixture Model (GMM) which is known for its exceptional speed and effectiveness in distinguishing between noise and silence. However, it may demonstrate relatively lower accuracy when it comes to differentiating speech from background noise.
Silero VAD [2] is based on a Deep Neural Networks (DNN) and utilizes the ONNX Runtime Mobile for execution. It provides exceptional accuracy and achieves processing time that is very close to WebRTC VAD.
Yamnet VAD [3] is based on a Deep Neural Networks (DNN) and employs the Mobilenet_v1 depthwise-separable convolution architecture. For execution utilizes the Tensorflow Lite runtime. Yamnet VAD can predict 521 audio event classes (such as speech, music, animal sounds and etc). It was trained on AudioSet-YouTube corpus.
WebRTC VAD is lightweight (only 158 KB) and provides exceptional speed in audio processing, but it may exhibit lower accuracy compared to DNN models. WebRTC VAD can be invaluable in scenarios where a small and fast library is necessary and where sacrificing accuracy is acceptable. In situations where high accuracy is critical, models like Silero VAD and Yamnet VAD are more preferable. For more detailed insights and a comprehensive comparison between DNN and GMM, refer to the following comparison Silero VAD vs WebRTC VAD.
WebRTC VAD library only accepts 16-bit Mono PCM audio stream and can work with next Sample Rates, Frame Sizes and Classifiers.
|
|
Recommended parameters for WebRTC VAD:
- Sample Rate (required) - 16KHz - The sample rate of the audio input.
- Frame Size (required) - 512 - The frame size of the audio input.
- Mode (required) - VERY_AGGRESSIVE - The confidence mode of the VAD model.
- Silence Duration (optional) - 300ms - The minimum duration in milliseconds for speech segments.
- Speech Duration (optional) - 50ms - The minimum duration in milliseconds for silence segments.
WebRTC VAD supports 2 different ways of detecting speech: Detector which detect speech/noise in short audio frames and then return result for every frame and Continuous Speech listener which detect long utterances without returning false positive results when user makes pauses between sentences.
val vad = Vad.builder()
.setSampleRate(SampleRate.SAMPLE_RATE_16K)
.setFrameSize(FrameSize.FRAME_SIZE_512)
.setMode(Mode.VERY_AGGRESSIVE)
.setSilenceDurationMs(300)
.setSpeechDurationMs(50)
.build()
val isSpeech = vad.isSpeech(audioData)
vad.setContinuousSpeechListener(audioData, object : VadListener {
override fun onSpeechDetected() {
//Speech detected!
}
override fun onNoiseDetected() {
//Noise detected!
}
})
vad.close()
Silero VAD library only accepts 16-bit Mono PCM audio stream and can work with next Sample Rates, Frame Sizes and Classifiers.
|
|
Recommended parameters for Silero VAD:
- Context (required) - The Context is required to facilitate reading the model file from the Android file system.
- Sample Rate (required) - 8KHz - The sample rate of the audio input.
- Frame Size (required) - 256 - The frame size of the audio input.
- Mode (required) - NORMAL - The confidence mode of the VAD model.
- Silence Duration (optional) - 300ms - The minimum duration in milliseconds for speech segments.
- Speech Duration (optional) - 50ms - The minimum duration in milliseconds for silence segments.
Silero VAD supports 2 different ways of detecting speech: Detector which detect speech/noise in short audio frames and then return result for every frame and Continuous Speech listener which detect long utterances without returning false positive results when user makes pauses between sentences.
val vad = Vad.builder()
.setContext(applicationContext)
.setSampleRate(SampleRate.SAMPLE_RATE_8K)
.setFrameSize(FrameSize.FRAME_SIZE_256)
.setMode(Mode.NORMAL)
.setSilenceDurationMs(300)
.setSpeechDurationMs(50)
.build()
val isSpeech = vad.isSpeech(audioData)
vad.setContinuousSpeechListener(audioData, object : VadListener {
override fun onSpeechDetected() {
//Speech detected!
}
override fun onNoiseDetected() {
//Noise detected!
}
})
vad.close()
The library utilizes the ONNX runtime to run Silero VAD DNN, which requires the addition of necessary dependencies.
dependencies {
implementation 'com.microsoft.onnxruntime:onnxruntime-android:1.15.1'
}
Yamnet VAD library only accepts 16-bit Mono PCM audio stream and can work with next Sample Rates, Frame Sizes and Classifiers.
|
|
Recommended parameters for Yamnet VAD:
- Context (required) - The Context is required to facilitate reading the model file from the Android file system.
- Sample Rate (required) - 16KHz - The sample rate of the audio input.
- Frame Size (required) - 243 - The frame size of the audio input.
- Mode (required) - NORMAL - The confidence mode of the VAD model.
- Silence Duration (optional) - 30ms - The minimum duration in milliseconds for speech segments.
- Speech Duration (optional) - 30ms - The minimum duration in milliseconds for silence segments.
Yamnet VAD supports 2 different ways of detecting speech: Simple Classifier which predict 521 audio event classes (such as speech, music, animal sounds and etc) in short audio frames and then return result for every frame and Continuous Classifier listener which detect long utterances without returning false positive results when user makes pauses between sentences.
val vad = Vad.builder()
.setContext(applicationContext)
.setSampleRate(SampleRate.SAMPLE_RATE_16K)
.setFrameSize(FrameSize.FRAME_SIZE_243)
.setMode(Mode.NORMAL)
.setSilenceDurationMs(30)
.setSpeechDurationMs(30)
.build()
val soundCategory = vad.classifyAudio(audioData)
when (soundCategory.label) {
"Speech" -> "Speech Detected!" + soundCategory.score
"Cat" -> "Cat Detected!" + soundCategory.score
"Dog" -> "Dog Detected!" + soundCategory.score
"Music" -> "Music Detected!" + soundCategory.score
else -> "Noise Detected!" + soundCategory.score
}
vad.setContinuousClassifierListener("Speech", audioData, object : VadListener {
override fun onResult(event: SoundCategory) {
when (event.label) {
"Speech" -> "Speech Detected!" + event.score
else -> "Noise Detected!" + event.score
}
}
})
vad.close()
The library utilizes the Tensorflow Lite runtime to run Yamnet VAD DNN, which requires next dependencies.
dependencies {
implementation 'org.tensorflow:tensorflow-lite-task-audio:0.4.0'
}
WebRTC VAD - Android API level 16 and later.
Silero VAD - Android API level 21 and later.
Yamnet VAD - Android API level 23 and later.
JDK 8 or later.
Gradle is the only supported build configuration, so just add the dependency to your project build.gradle
file:
- Add it in your root build.gradle at the end of repositories:
allprojects {
repositories {
maven { url 'https://jitpack.io' }
}
}
- Add one dependency from list below:
dependencies {
implementation 'com.github.gkonovalov.android-vad:webrtc:2.0.4'
}
dependencies {
implementation 'com.github.gkonovalov.android-vad:silero:2.0.4'
}
dependencies {
implementation 'com.github.gkonovalov.android-vad:yamnet:2.0.4'
}
You also can download precompiled AAR library and APK files from GitHub's releases page.
[1] WebRTC VAD - Voice Activity Detector from Google which is reportedly one of the best available: it's fast, modern and free. This algorithm has found wide adoption and has recently become one of the gold-standards for delay-sensitive scenarios like web-based interaction.
[2] Silero VAD - pre-trained enterprise-grade Voice Activity Detector, Number Detector and Language Classifier [email protected].
[3] Yamnet VAD - YAMNet is a pretrained deep neural network that can predicts 521 audio event classes based on the AudioSet-YouTube corpus, employing the Mobilenet_v1 depthwise-separable convolution architecture.
Georgiy Konovalov 2023 (c) MIT License