Skip to content

Commit

Permalink
Ruff: apply same rules as in transformers (huggingface#2827)
Browse files Browse the repository at this point in the history
* Apply same ruff settings as in transformers

See https://github.com/huggingface/transformers/blob/main/pyproject.toml
Co-authored-by: Aaron Gokaslan <[email protected]>

* Apply new style rules

* Style

Co-authored-by: Aaron Gokaslan <[email protected]>

* style

* remove list, ruff wouldn't auto fix.

---------

Co-authored-by: Aaron Gokaslan <[email protected]>
  • Loading branch information
pcuenca and Skylion007 authored Mar 27, 2023
1 parent abb22b4 commit 1d7b4b6
Show file tree
Hide file tree
Showing 45 changed files with 209 additions and 213 deletions.
20 changes: 8 additions & 12 deletions examples/community/checkpoint_merger.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,24 +199,20 @@ def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]
if not attr.startswith("_"):
checkpoint_path_1 = os.path.join(cached_folders[1], attr)
if os.path.exists(checkpoint_path_1):
files = list(
(
*glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_1, "*.bin")),
)
)
files = [
*glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_1, "*.bin")),
]
checkpoint_path_1 = files[0] if len(files) > 0 else None
if len(cached_folders) < 3:
checkpoint_path_2 = None
else:
checkpoint_path_2 = os.path.join(cached_folders[2], attr)
if os.path.exists(checkpoint_path_2):
files = list(
(
*glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_2, "*.bin")),
)
)
files = [
*glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
*glob.glob(os.path.join(checkpoint_path_2, "*.bin")),
]
checkpoint_path_2 = files[0] if len(files) > 0 else None
# For an attr if both checkpoint_path_1 and 2 are None, ignore.
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
Expand Down
2 changes: 1 addition & 1 deletion examples/community/imagic_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@

def preprocess(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
Expand Down
4 changes: 2 additions & 2 deletions examples/community/lpw_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,7 +376,7 @@ def get_weighted_text_embeddings(

def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
Expand All @@ -387,7 +387,7 @@ def preprocess_image(image):
def preprocess_mask(mask, scale_factor=8):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
Expand Down
4 changes: 2 additions & 2 deletions examples/community/lpw_stable_diffusion_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,7 +403,7 @@ def get_weighted_text_embeddings(

def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
Expand All @@ -413,7 +413,7 @@ def preprocess_image(image):
def preprocess_mask(mask, scale_factor=8):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
Expand Down
2 changes: 1 addition & 1 deletion examples/community/stable_unclip.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def __init__(
):
super().__init__()

decoder_pipe_kwargs = dict(image_encoder=None) if decoder_pipe_kwargs is None else decoder_pipe_kwargs
decoder_pipe_kwargs = {"image_encoder": None} if decoder_pipe_kwargs is None else decoder_pipe_kwargs

decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype

Expand Down
2 changes: 1 addition & 1 deletion examples/instruct_pix2pix/train_instruct_pix2pix.py
Original file line number Diff line number Diff line change
Expand Up @@ -673,7 +673,7 @@ def preprocess_train(examples):
examples["edited_pixel_values"] = edited_images

# Preprocess the captions.
captions = [caption for caption in examples[edit_prompt_column]]
captions = list(examples[edit_prompt_column])
examples["input_ids"] = tokenize_captions(captions)
return examples

Expand Down
22 changes: 11 additions & 11 deletions examples/rl/run_diffuser_locomotion.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,17 @@
from diffusers.experimental import ValueGuidedRLPipeline


config = dict(
n_samples=64,
horizon=32,
num_inference_steps=20,
n_guide_steps=2, # can set to 0 for faster sampling, does not use value network
scale_grad_by_std=True,
scale=0.1,
eta=0.0,
t_grad_cutoff=2,
device="cpu",
)
config = {
"n_samples": 64,
"horizon": 32,
"num_inference_steps": 20,
"n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network
"scale_grad_by_std": True,
"scale": 0.1,
"eta": 0.0,
"t_grad_cutoff": 2,
"device": "cpu",
}


if __name__ == "__main__":
Expand Down
4 changes: 2 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@ target-version = ['py37']

[tool.ruff]
# Never enforce `E501` (line length violations).
ignore = ["E501", "E741", "W605"]
select = ["E", "F", "I", "W"]
ignore = ["C901", "E501", "E741", "W605"]
select = ["C", "E", "F", "I", "W"]
line-length = 119

# Ignore import violations in all `__init__.py` files.
Expand Down
2 changes: 1 addition & 1 deletion scripts/convert_ddpm_original_checkpoint_to_diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -404,7 +404,7 @@ def convert_vq_autoenc_checkpoint(checkpoint, config):
config = json.loads(f.read())

# unet case
key_prefix_set = set(key.split(".")[0] for key in checkpoint.keys())
key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()}
if "encoder" in key_prefix_set and "decoder" in key_prefix_set:
converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config)
else:
Expand Down
80 changes: 40 additions & 40 deletions scripts/convert_models_diffuser_to_diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,29 +24,29 @@ def unet(hor):
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D")
model = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch")
state_dict = model.state_dict()
config = dict(
down_block_types=down_block_types,
block_out_channels=block_out_channels,
up_block_types=up_block_types,
layers_per_block=1,
use_timestep_embedding=True,
out_block_type="OutConv1DBlock",
norm_num_groups=8,
downsample_each_block=False,
in_channels=14,
out_channels=14,
extra_in_channels=0,
time_embedding_type="positional",
flip_sin_to_cos=False,
freq_shift=1,
sample_size=65536,
mid_block_type="MidResTemporalBlock1D",
act_fn="mish",
)
config = {
"down_block_types": down_block_types,
"block_out_channels": block_out_channels,
"up_block_types": up_block_types,
"layers_per_block": 1,
"use_timestep_embedding": True,
"out_block_type": "OutConv1DBlock",
"norm_num_groups": 8,
"downsample_each_block": False,
"in_channels": 14,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"flip_sin_to_cos": False,
"freq_shift": 1,
"sample_size": 65536,
"mid_block_type": "MidResTemporalBlock1D",
"act_fn": "mish",
}
hf_value_function = UNet1DModel(**config)
print(f"length of state dict: {len(state_dict.keys())}")
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
mapping = dict((k, hfk) for k, hfk in zip(model.state_dict().keys(), hf_value_function.state_dict().keys()))
mapping = dict(zip(model.state_dict().keys(), hf_value_function.state_dict().keys()))
for k, v in mapping.items():
state_dict[v] = state_dict.pop(k)
hf_value_function.load_state_dict(state_dict)
Expand All @@ -57,33 +57,33 @@ def unet(hor):


def value_function():
config = dict(
in_channels=14,
down_block_types=("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
up_block_types=(),
out_block_type="ValueFunction",
mid_block_type="ValueFunctionMidBlock1D",
block_out_channels=(32, 64, 128, 256),
layers_per_block=1,
downsample_each_block=True,
sample_size=65536,
out_channels=14,
extra_in_channels=0,
time_embedding_type="positional",
use_timestep_embedding=True,
flip_sin_to_cos=False,
freq_shift=1,
norm_num_groups=8,
act_fn="mish",
)
config = {
"in_channels": 14,
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": (),
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": (32, 64, 128, 256),
"layers_per_block": 1,
"downsample_each_block": True,
"sample_size": 65536,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1,
"norm_num_groups": 8,
"act_fn": "mish",
}

model = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch")
state_dict = model
hf_value_function = UNet1DModel(**config)
print(f"length of state dict: {len(state_dict.keys())}")
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")

mapping = dict((k, hfk) for k, hfk in zip(state_dict.keys(), hf_value_function.state_dict().keys()))
mapping = dict(zip(state_dict.keys(), hf_value_function.state_dict().keys()))
for k, v in mapping.items():
state_dict[v] = state_dict.pop(k)

Expand Down
68 changes: 34 additions & 34 deletions scripts/convert_original_audioldm_to_diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,19 +246,19 @@ def create_unet_diffusers_config(original_config, image_size: int):
)
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None

config = dict(
sample_size=image_size // vae_scale_factor,
in_channels=unet_params.in_channels,
out_channels=unet_params.out_channels,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=unet_params.num_res_blocks,
cross_attention_dim=cross_attention_dim,
class_embed_type=class_embed_type,
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
class_embeddings_concat=class_embeddings_concat,
)
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": cross_attention_dim,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"class_embeddings_concat": class_embeddings_concat,
}

return config

Expand All @@ -278,17 +278,17 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):

scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215

config = dict(
sample_size=image_size,
in_channels=vae_params.in_channels,
out_channels=vae_params.out_ch,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=vae_params.z_channels,
layers_per_block=vae_params.num_res_blocks,
scaling_factor=float(scaling_factor),
)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"scaling_factor": float(scaling_factor),
}
return config


Expand Down Expand Up @@ -670,18 +670,18 @@ def create_transformers_vocoder_config(original_config):
"""
vocoder_params = original_config.model.params.vocoder_config.params

config = dict(
model_in_dim=vocoder_params.num_mels,
sampling_rate=vocoder_params.sampling_rate,
upsample_initial_channel=vocoder_params.upsample_initial_channel,
upsample_rates=list(vocoder_params.upsample_rates),
upsample_kernel_sizes=list(vocoder_params.upsample_kernel_sizes),
resblock_kernel_sizes=list(vocoder_params.resblock_kernel_sizes),
resblock_dilation_sizes=[
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
],
normalize_before=False,
)
"normalize_before": False,
}

return config

Expand Down
Loading

0 comments on commit 1d7b4b6

Please sign in to comment.