Skip to content

Commit

Permalink
sched: loadavg: make calc_load_n() public
Browse files Browse the repository at this point in the history
It's going to be used in a later patch. Keep the churn separate.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Johannes Weiner <[email protected]>
Acked-by: Peter Zijlstra (Intel) <[email protected]>
Tested-by: Suren Baghdasaryan <[email protected]>
Tested-by: Daniel Drake <[email protected]>
Cc: Christopher Lameter <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Johannes Weiner <[email protected]>
Cc: Mike Galbraith <[email protected]>
Cc: Peter Enderborg <[email protected]>
Cc: Randy Dunlap <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: Tejun Heo <[email protected]>
Cc: Vinayak Menon <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
  • Loading branch information
hnaz authored and torvalds committed Oct 26, 2018
1 parent 8508cf3 commit 5c54f5b
Show file tree
Hide file tree
Showing 2 changed files with 72 additions and 69 deletions.
3 changes: 3 additions & 0 deletions include/linux/sched/loadavg.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,9 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)
return newload / FIXED_1;
}

extern unsigned long calc_load_n(unsigned long load, unsigned long exp,
unsigned long active, unsigned int n);

#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

Expand Down
138 changes: 69 additions & 69 deletions kernel/sched/loadavg.c
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,75 @@ long calc_load_fold_active(struct rq *this_rq, long adjust)
return delta;
}

/**
* fixed_power_int - compute: x^n, in O(log n) time
*
* @x: base of the power
* @frac_bits: fractional bits of @x
* @n: power to raise @x to.
*
* By exploiting the relation between the definition of the natural power
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
* (where: n_i \elem {0, 1}, the binary vector representing n),
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
* of course trivially computable in O(log_2 n), the length of our binary
* vector.
*/
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
unsigned long result = 1UL << frac_bits;

if (n) {
for (;;) {
if (n & 1) {
result *= x;
result += 1UL << (frac_bits - 1);
result >>= frac_bits;
}
n >>= 1;
if (!n)
break;
x *= x;
x += 1UL << (frac_bits - 1);
x >>= frac_bits;
}
}

return result;
}

/*
* a1 = a0 * e + a * (1 - e)
*
* a2 = a1 * e + a * (1 - e)
* = (a0 * e + a * (1 - e)) * e + a * (1 - e)
* = a0 * e^2 + a * (1 - e) * (1 + e)
*
* a3 = a2 * e + a * (1 - e)
* = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
* = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
*
* ...
*
* an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
* = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
* = a0 * e^n + a * (1 - e^n)
*
* [1] application of the geometric series:
*
* n 1 - x^(n+1)
* S_n := \Sum x^i = -------------
* i=0 1 - x
*/
unsigned long
calc_load_n(unsigned long load, unsigned long exp,
unsigned long active, unsigned int n)
{
return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

#ifdef CONFIG_NO_HZ_COMMON
/*
* Handle NO_HZ for the global load-average.
Expand Down Expand Up @@ -210,75 +279,6 @@ static long calc_load_nohz_fold(void)
return delta;
}

/**
* fixed_power_int - compute: x^n, in O(log n) time
*
* @x: base of the power
* @frac_bits: fractional bits of @x
* @n: power to raise @x to.
*
* By exploiting the relation between the definition of the natural power
* function: x^n := x*x*...*x (x multiplied by itself for n times), and
* the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
* (where: n_i \elem {0, 1}, the binary vector representing n),
* we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
* of course trivially computable in O(log_2 n), the length of our binary
* vector.
*/
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
unsigned long result = 1UL << frac_bits;

if (n) {
for (;;) {
if (n & 1) {
result *= x;
result += 1UL << (frac_bits - 1);
result >>= frac_bits;
}
n >>= 1;
if (!n)
break;
x *= x;
x += 1UL << (frac_bits - 1);
x >>= frac_bits;
}
}

return result;
}

/*
* a1 = a0 * e + a * (1 - e)
*
* a2 = a1 * e + a * (1 - e)
* = (a0 * e + a * (1 - e)) * e + a * (1 - e)
* = a0 * e^2 + a * (1 - e) * (1 + e)
*
* a3 = a2 * e + a * (1 - e)
* = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
* = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
*
* ...
*
* an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
* = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
* = a0 * e^n + a * (1 - e^n)
*
* [1] application of the geometric series:
*
* n 1 - x^(n+1)
* S_n := \Sum x^i = -------------
* i=0 1 - x
*/
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
unsigned long active, unsigned int n)
{
return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
* NO_HZ can leave us missing all per-CPU ticks calling
* calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
Expand Down

0 comments on commit 5c54f5b

Please sign in to comment.