Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
mm/slub: optimize alloc/free fastpath by removing preemption on/off
We had to insert a preempt enable/disable in the fastpath a while ago in order to guarantee that tid and kmem_cache_cpu are retrieved on the same cpu. It is the problem only for CONFIG_PREEMPT in which scheduler can move the process to other cpu during retrieving data. Now, I reach the solution to remove preempt enable/disable in the fastpath. If tid is matched with kmem_cache_cpu's tid after tid and kmem_cache_cpu are retrieved by separate this_cpu operation, it means that they are retrieved on the same cpu. If not matched, we just have to retry it. With this guarantee, preemption enable/disable isn't need at all even if CONFIG_PREEMPT, so this patch removes it. I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free in CONFIG_PREEMPT. (14.821 ns -> 14.049 ns) Below is the result of Christoph's slab_test reported by Jesper Dangaard Brouer. * Before Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles 10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles 10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles 10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles 10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles 10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles 10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles 10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles 10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles 10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles 10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles 10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 68 cycles 10000 times kmalloc(16)/kfree -> 68 cycles 10000 times kmalloc(32)/kfree -> 69 cycles 10000 times kmalloc(64)/kfree -> 68 cycles 10000 times kmalloc(128)/kfree -> 68 cycles 10000 times kmalloc(256)/kfree -> 68 cycles 10000 times kmalloc(512)/kfree -> 74 cycles 10000 times kmalloc(1024)/kfree -> 75 cycles 10000 times kmalloc(2048)/kfree -> 74 cycles 10000 times kmalloc(4096)/kfree -> 74 cycles 10000 times kmalloc(8192)/kfree -> 75 cycles 10000 times kmalloc(16384)/kfree -> 510 cycles * After Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles 10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles 10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles 10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles 10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles 10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles 10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles 10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles 10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles 10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles 10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles 10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 65 cycles 10000 times kmalloc(16)/kfree -> 66 cycles 10000 times kmalloc(32)/kfree -> 65 cycles 10000 times kmalloc(64)/kfree -> 66 cycles 10000 times kmalloc(128)/kfree -> 66 cycles 10000 times kmalloc(256)/kfree -> 71 cycles 10000 times kmalloc(512)/kfree -> 72 cycles 10000 times kmalloc(1024)/kfree -> 71 cycles 10000 times kmalloc(2048)/kfree -> 71 cycles 10000 times kmalloc(4096)/kfree -> 71 cycles 10000 times kmalloc(8192)/kfree -> 65 cycles 10000 times kmalloc(16384)/kfree -> 511 cycles Most of the results are better than before. Note that this change slightly worses performance in !CONFIG_PREEMPT, roughly 0.3%. Implementing each case separately would help performance, but, since it's so marginal, I didn't do that. This would help maintanance since we have same code for all cases. Signed-off-by: Joonsoo Kim <[email protected]> Acked-by: Christoph Lameter <[email protected]> Tested-by: Jesper Dangaard Brouer <[email protected]> Acked-by: Jesper Dangaard Brouer <[email protected]> Cc: Pekka Enberg <[email protected]> Cc: David Rientjes <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
- Loading branch information