forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
… srl_api_v2
- Loading branch information
Showing
3 changed files
with
170 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# /usr/bin/env python | ||
# -*- coding:utf-8 -*- | ||
|
||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz | ||
""" | ||
import paddle.v2.dataset.common | ||
import tarfile | ||
import Queue | ||
import re | ||
import string | ||
import threading | ||
|
||
__all__ = ['build_dict', 'train', 'test'] | ||
|
||
URL = 'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz' | ||
MD5 = '7c2ac02c03563afcf9b574c7e56c153a' | ||
|
||
|
||
# Read files that match pattern. Tokenize and yield each file. | ||
def tokenize(pattern): | ||
with tarfile.open(paddle.v2.dataset.common.download(URL, 'imdb', | ||
MD5)) as tarf: | ||
# Note that we should use tarfile.next(), which does | ||
# sequential access of member files, other than | ||
# tarfile.extractfile, which does random access and might | ||
# destroy hard disks. | ||
tf = tarf.next() | ||
while tf != None: | ||
if bool(pattern.match(tf.name)): | ||
# newline and punctuations removal and ad-hoc tokenization. | ||
yield tarf.extractfile(tf).read().rstrip("\n\r").translate( | ||
None, string.punctuation).lower().split() | ||
tf = tarf.next() | ||
|
||
|
||
def build_dict(pattern, cutoff): | ||
word_freq = {} | ||
for doc in tokenize(pattern): | ||
for word in doc: | ||
paddle.v2.dataset.common.dict_add(word_freq, word) | ||
|
||
# Not sure if we should prune less-frequent words here. | ||
word_freq = filter(lambda x: x[1] > cutoff, word_freq.items()) | ||
|
||
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0])) | ||
words, _ = list(zip(*dictionary)) | ||
word_idx = dict(zip(words, xrange(len(words)))) | ||
word_idx['<unk>'] = len(words) | ||
return word_idx | ||
|
||
|
||
def reader_creator(pos_pattern, neg_pattern, word_idx, buffer_size): | ||
UNK = word_idx['<unk>'] | ||
|
||
qs = [Queue.Queue(maxsize=buffer_size), Queue.Queue(maxsize=buffer_size)] | ||
|
||
def load(pattern, queue): | ||
for doc in tokenize(pattern): | ||
queue.put(doc) | ||
queue.put(None) | ||
|
||
def reader(): | ||
# Creates two threads that loads positive and negative samples | ||
# into qs. | ||
t0 = threading.Thread( | ||
target=load, args=( | ||
pos_pattern, | ||
qs[0], )) | ||
t0.daemon = True | ||
t0.start() | ||
|
||
t1 = threading.Thread( | ||
target=load, args=( | ||
neg_pattern, | ||
qs[1], )) | ||
t1.daemon = True | ||
t1.start() | ||
|
||
# Read alternatively from qs[0] and qs[1]. | ||
i = 0 | ||
doc = qs[i].get() | ||
while doc != None: | ||
yield [word_idx.get(w, UNK) for w in doc], i % 2 | ||
i += 1 | ||
doc = qs[i % 2].get() | ||
|
||
# If any queue is empty, reads from the other queue. | ||
i += 1 | ||
doc = qs[i % 2].get() | ||
while doc != None: | ||
yield [word_idx.get(w, UNK) for w in doc], i % 2 | ||
doc = qs[i % 2].get() | ||
|
||
return reader() | ||
|
||
|
||
def train(word_idx): | ||
return reader_creator( | ||
re.compile("aclImdb/train/pos/.*\.txt$"), | ||
re.compile("aclImdb/train/neg/.*\.txt$"), word_idx, 1000) | ||
|
||
|
||
def test(word_idx): | ||
return reader_creator( | ||
re.compile("aclImdb/test/pos/.*\.txt$"), | ||
re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import paddle.v2.dataset.imdb | ||
import unittest | ||
import re | ||
|
||
TRAIN_POS_PATTERN = re.compile("aclImdb/train/pos/.*\.txt$") | ||
TRAIN_NEG_PATTERN = re.compile("aclImdb/train/neg/.*\.txt$") | ||
TRAIN_PATTERN = re.compile("aclImdb/train/.*\.txt$") | ||
|
||
TEST_POS_PATTERN = re.compile("aclImdb/test/pos/.*\.txt$") | ||
TEST_NEG_PATTERN = re.compile("aclImdb/test/neg/.*\.txt$") | ||
TEST_PATTERN = re.compile("aclImdb/test/.*\.txt$") | ||
|
||
|
||
class TestIMDB(unittest.TestCase): | ||
word_idx = None | ||
|
||
def test_build_dict(self): | ||
if self.word_idx == None: | ||
self.word_idx = paddle.v2.dataset.imdb.build_dict(TRAIN_PATTERN, | ||
150) | ||
|
||
self.assertEqual(len(self.word_idx), 7036) | ||
|
||
def check_dataset(self, dataset, expected_size): | ||
if self.word_idx == None: | ||
self.word_idx = paddle.v2.dataset.imdb.build_dict(TRAIN_PATTERN, | ||
150) | ||
|
||
sum = 0 | ||
for l in dataset(self.word_idx): | ||
self.assertEqual(l[1], sum % 2) | ||
sum += 1 | ||
self.assertEqual(sum, expected_size) | ||
|
||
def test_train(self): | ||
self.check_dataset(paddle.v2.dataset.imdb.train, 25000) | ||
|
||
def test_test(self): | ||
self.check_dataset(paddle.v2.dataset.imdb.test, 25000) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |