forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-16282][SQL] Implement percentile SQL function.
## What changes were proposed in this pull request? Implement percentile SQL function. It computes the exact percentile(s) of expr at pc with range in [0, 1]. ## How was this patch tested? Add a new testsuite `PercentileSuite` to test percentile directly. Updated related testcases in `ExpressionToSQLSuite`. Author: jiangxingbo <[email protected]> Author: 蒋星博 <[email protected]> Author: jiangxingbo <[email protected]> Closes apache#14136 from jiangxb1987/percentile.
- Loading branch information
1 parent
1856428
commit 0f5f52a
Showing
5 changed files
with
518 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
269 changes: 269 additions & 0 deletions
269
...alyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Percentile.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.sql.catalyst.expressions.aggregate | ||
|
||
import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream} | ||
import java.util | ||
|
||
import org.apache.spark.sql.AnalysisException | ||
import org.apache.spark.sql.catalyst.InternalRow | ||
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult | ||
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.{TypeCheckFailure, TypeCheckSuccess} | ||
import org.apache.spark.sql.catalyst.expressions._ | ||
import org.apache.spark.sql.catalyst.util._ | ||
import org.apache.spark.sql.types._ | ||
import org.apache.spark.util.collection.OpenHashMap | ||
|
||
/** | ||
* The Percentile aggregate function returns the exact percentile(s) of numeric column `expr` at | ||
* the given percentage(s) with value range in [0.0, 1.0]. | ||
* | ||
* The operator is bound to the slower sort based aggregation path because the number of elements | ||
* and their partial order cannot be determined in advance. Therefore we have to store all the | ||
* elements in memory, and that too many elements can cause GC paused and eventually OutOfMemory | ||
* Errors. | ||
* | ||
* @param child child expression that produce numeric column value with `child.eval(inputRow)` | ||
* @param percentageExpression Expression that represents a single percentage value or an array of | ||
* percentage values. Each percentage value must be in the range | ||
* [0.0, 1.0]. | ||
*/ | ||
@ExpressionDescription( | ||
usage = | ||
""" | ||
_FUNC_(col, percentage) - Returns the exact percentile value of numeric column `col` at the | ||
given percentage. The value of percentage must be between 0.0 and 1.0. | ||
_FUNC_(col, array(percentage1 [, percentage2]...)) - Returns the exact percentile value array | ||
of numeric column `col` at the given percentage(s). Each value of the percentage array must | ||
be between 0.0 and 1.0. | ||
""") | ||
case class Percentile( | ||
child: Expression, | ||
percentageExpression: Expression, | ||
mutableAggBufferOffset: Int = 0, | ||
inputAggBufferOffset: Int = 0) extends TypedImperativeAggregate[OpenHashMap[Number, Long]] { | ||
|
||
def this(child: Expression, percentageExpression: Expression) = { | ||
this(child, percentageExpression, 0, 0) | ||
} | ||
|
||
override def prettyName: String = "percentile" | ||
|
||
override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): Percentile = | ||
copy(mutableAggBufferOffset = newMutableAggBufferOffset) | ||
|
||
override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): Percentile = | ||
copy(inputAggBufferOffset = newInputAggBufferOffset) | ||
|
||
// Mark as lazy so that percentageExpression is not evaluated during tree transformation. | ||
@transient | ||
private lazy val returnPercentileArray = percentageExpression.dataType.isInstanceOf[ArrayType] | ||
|
||
@transient | ||
private lazy val percentages = | ||
(percentageExpression.dataType, percentageExpression.eval()) match { | ||
case (_, num: Double) => Seq(num) | ||
case (ArrayType(baseType: NumericType, _), arrayData: ArrayData) => | ||
val numericArray = arrayData.toObjectArray(baseType) | ||
numericArray.map { x => | ||
baseType.numeric.toDouble(x.asInstanceOf[baseType.InternalType])}.toSeq | ||
case other => | ||
throw new AnalysisException(s"Invalid data type ${other._1} for parameter percentages") | ||
} | ||
|
||
override def children: Seq[Expression] = child :: percentageExpression :: Nil | ||
|
||
// Returns null for empty inputs | ||
override def nullable: Boolean = true | ||
|
||
override lazy val dataType: DataType = percentageExpression.dataType match { | ||
case _: ArrayType => ArrayType(DoubleType, false) | ||
case _ => DoubleType | ||
} | ||
|
||
override def inputTypes: Seq[AbstractDataType] = percentageExpression.dataType match { | ||
case _: ArrayType => Seq(NumericType, ArrayType) | ||
case _ => Seq(NumericType, DoubleType) | ||
} | ||
|
||
// Check the inputTypes are valid, and the percentageExpression satisfies: | ||
// 1. percentageExpression must be foldable; | ||
// 2. percentages(s) must be in the range [0.0, 1.0]. | ||
override def checkInputDataTypes(): TypeCheckResult = { | ||
// Validate the inputTypes | ||
val defaultCheck = super.checkInputDataTypes() | ||
if (defaultCheck.isFailure) { | ||
defaultCheck | ||
} else if (!percentageExpression.foldable) { | ||
// percentageExpression must be foldable | ||
TypeCheckFailure("The percentage(s) must be a constant literal, " + | ||
s"but got $percentageExpression") | ||
} else if (percentages.exists(percentage => percentage < 0.0 || percentage > 1.0)) { | ||
// percentages(s) must be in the range [0.0, 1.0] | ||
TypeCheckFailure("Percentage(s) must be between 0.0 and 1.0, " + | ||
s"but got $percentageExpression") | ||
} else { | ||
TypeCheckSuccess | ||
} | ||
} | ||
|
||
override def createAggregationBuffer(): OpenHashMap[Number, Long] = { | ||
// Initialize new counts map instance here. | ||
new OpenHashMap[Number, Long]() | ||
} | ||
|
||
override def update(buffer: OpenHashMap[Number, Long], input: InternalRow): Unit = { | ||
val key = child.eval(input).asInstanceOf[Number] | ||
|
||
// Null values are ignored in counts map. | ||
if (key != null) { | ||
buffer.changeValue(key, 1L, _ + 1L) | ||
} | ||
} | ||
|
||
override def merge(buffer: OpenHashMap[Number, Long], other: OpenHashMap[Number, Long]): Unit = { | ||
other.foreach { case (key, count) => | ||
buffer.changeValue(key, count, _ + count) | ||
} | ||
} | ||
|
||
override def eval(buffer: OpenHashMap[Number, Long]): Any = { | ||
generateOutput(getPercentiles(buffer)) | ||
} | ||
|
||
private def getPercentiles(buffer: OpenHashMap[Number, Long]): Seq[Double] = { | ||
if (buffer.isEmpty) { | ||
return Seq.empty | ||
} | ||
|
||
val sortedCounts = buffer.toSeq.sortBy(_._1)( | ||
child.dataType.asInstanceOf[NumericType].ordering.asInstanceOf[Ordering[Number]]) | ||
val accumlatedCounts = sortedCounts.scanLeft(sortedCounts.head._1, 0L) { | ||
case ((key1, count1), (key2, count2)) => (key2, count1 + count2) | ||
}.tail | ||
val maxPosition = accumlatedCounts.last._2 - 1 | ||
|
||
percentages.map { percentile => | ||
getPercentile(accumlatedCounts, maxPosition * percentile).doubleValue() | ||
} | ||
} | ||
|
||
private def generateOutput(results: Seq[Double]): Any = { | ||
if (results.isEmpty) { | ||
null | ||
} else if (returnPercentileArray) { | ||
new GenericArrayData(results) | ||
} else { | ||
results.head | ||
} | ||
} | ||
|
||
/** | ||
* Get the percentile value. | ||
* | ||
* This function has been based upon similar function from HIVE | ||
* `org.apache.hadoop.hive.ql.udf.UDAFPercentile.getPercentile()`. | ||
*/ | ||
private def getPercentile(aggreCounts: Seq[(Number, Long)], position: Double): Number = { | ||
// We may need to do linear interpolation to get the exact percentile | ||
val lower = position.floor.toLong | ||
val higher = position.ceil.toLong | ||
|
||
// Use binary search to find the lower and the higher position. | ||
val countsArray = aggreCounts.map(_._2).toArray[Long] | ||
val lowerIndex = binarySearchCount(countsArray, 0, aggreCounts.size, lower + 1) | ||
val higherIndex = binarySearchCount(countsArray, 0, aggreCounts.size, higher + 1) | ||
|
||
val lowerKey = aggreCounts(lowerIndex)._1 | ||
if (higher == lower) { | ||
// no interpolation needed because position does not have a fraction | ||
return lowerKey | ||
} | ||
|
||
val higherKey = aggreCounts(higherIndex)._1 | ||
if (higherKey == lowerKey) { | ||
// no interpolation needed because lower position and higher position has the same key | ||
return lowerKey | ||
} | ||
|
||
// Linear interpolation to get the exact percentile | ||
return (higher - position) * lowerKey.doubleValue() + | ||
(position - lower) * higherKey.doubleValue() | ||
} | ||
|
||
/** | ||
* use a binary search to find the index of the position closest to the current value. | ||
*/ | ||
private def binarySearchCount( | ||
countsArray: Array[Long], start: Int, end: Int, value: Long): Int = { | ||
util.Arrays.binarySearch(countsArray, 0, end, value) match { | ||
case ix if ix < 0 => -(ix + 1) | ||
case ix => ix | ||
} | ||
} | ||
|
||
override def serialize(obj: OpenHashMap[Number, Long]): Array[Byte] = { | ||
val buffer = new Array[Byte](4 << 10) // 4K | ||
val bos = new ByteArrayOutputStream() | ||
val out = new DataOutputStream(bos) | ||
try { | ||
val projection = UnsafeProjection.create(Array[DataType](child.dataType, LongType)) | ||
// Write pairs in counts map to byte buffer. | ||
obj.foreach { case (key, count) => | ||
val row = InternalRow.apply(key, count) | ||
val unsafeRow = projection.apply(row) | ||
out.writeInt(unsafeRow.getSizeInBytes) | ||
unsafeRow.writeToStream(out, buffer) | ||
} | ||
out.writeInt(-1) | ||
out.flush() | ||
|
||
bos.toByteArray | ||
} finally { | ||
out.close() | ||
bos.close() | ||
} | ||
} | ||
|
||
override def deserialize(bytes: Array[Byte]): OpenHashMap[Number, Long] = { | ||
val bis = new ByteArrayInputStream(bytes) | ||
val ins = new DataInputStream(bis) | ||
try { | ||
val counts = new OpenHashMap[Number, Long] | ||
// Read unsafeRow size and content in bytes. | ||
var sizeOfNextRow = ins.readInt() | ||
while (sizeOfNextRow >= 0) { | ||
val bs = new Array[Byte](sizeOfNextRow) | ||
ins.readFully(bs) | ||
val row = new UnsafeRow(2) | ||
row.pointTo(bs, sizeOfNextRow) | ||
// Insert the pairs into counts map. | ||
val key = row.get(0, child.dataType).asInstanceOf[Number] | ||
val count = row.get(1, LongType).asInstanceOf[Long] | ||
counts.update(key, count) | ||
sizeOfNextRow = ins.readInt() | ||
} | ||
|
||
counts | ||
} finally { | ||
ins.close() | ||
bis.close() | ||
} | ||
} | ||
} |
Oops, something went wrong.