Skip to content

Commit

Permalink
[SPARK-18186] Migrate HiveUDAFFunction to TypedImperativeAggregate fo…
Browse files Browse the repository at this point in the history
…r partial aggregation support

## What changes were proposed in this pull request?

While being evaluated in Spark SQL, Hive UDAFs don't support partial aggregation. This PR migrates `HiveUDAFFunction`s to `TypedImperativeAggregate`, which already provides partial aggregation support for aggregate functions that may use arbitrary Java objects as aggregation states.

The following snippet shows the effect of this PR:

```scala
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax
sql(s"CREATE FUNCTION hive_max AS '${classOf[GenericUDAFMax].getName}'")

spark.range(100).createOrReplaceTempView("t")

// A query using both Spark SQL native `max` and Hive `max`
sql(s"SELECT max(id), hive_max(id) FROM t").explain()
```

Before this PR:

```
== Physical Plan ==
SortAggregate(key=[], functions=[max(id#1L), default.hive_max(default.hive_max, HiveFunctionWrapper(org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax,org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax7475f57e), id#1L, false, 0, 0)])
+- Exchange SinglePartition
   +- *Range (0, 100, step=1, splits=Some(1))
```

After this PR:

```
== Physical Plan ==
SortAggregate(key=[], functions=[max(id#1L), default.hive_max(default.hive_max, HiveFunctionWrapper(org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax,org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax5e18a6a7), id#1L, false, 0, 0)])
+- Exchange SinglePartition
   +- SortAggregate(key=[], functions=[partial_max(id#1L), partial_default.hive_max(default.hive_max, HiveFunctionWrapper(org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax,org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax5e18a6a7), id#1L, false, 0, 0)])
      +- *Range (0, 100, step=1, splits=Some(1))
```

The tricky part of the PR is mostly about updating and passing around aggregation states of `HiveUDAFFunction`s since the aggregation state of a Hive UDAF may appear in three different forms. Let's take a look at the testing `MockUDAF` added in this PR as an example. This UDAF computes the count of non-null values together with the count of nulls of a given column. Its aggregation state may appear as the following forms at different time:

1. A `MockUDAFBuffer`, which is a concrete subclass of `GenericUDAFEvaluator.AggregationBuffer`

   The form used by Hive UDAF API. This form is required by the following scenarios:

   - Calling `GenericUDAFEvaluator.iterate()` to update an existing aggregation state with new input values.
   - Calling `GenericUDAFEvaluator.terminate()` to get the final aggregated value from an existing aggregation state.
   - Calling `GenericUDAFEvaluator.merge()` to merge other aggregation states into an existing aggregation state.

     The existing aggregation state to be updated must be in this form.

   Conversions:

   - To form 2:

     `GenericUDAFEvaluator.terminatePartial()`

   - To form 3:

     Convert to form 2 first, and then to 3.

2. An `Object[]` array containing two `java.lang.Long` values.

   The form used to interact with Hive's `ObjectInspector`s. This form is required by the following scenarios:

   - Calling `GenericUDAFEvaluator.terminatePartial()` to convert an existing aggregation state in form 1 to form 2.
   - Calling `GenericUDAFEvaluator.merge()` to merge other aggregation states into an existing aggregation state.

     The input aggregation state must be in this form.

   Conversions:

   - To form 1:

     No direct method. Have to create an empty `AggregationBuffer` and merge it into the empty buffer.

   - To form 3:

     `unwrapperFor()`/`unwrap()` method of `HiveInspectors`

3. The byte array that holds data of an `UnsafeRow` with two `LongType` fields.

   The form used by Spark SQL to shuffle partial aggregation results. This form is required because `TypedImperativeAggregate` always asks its subclasses to serialize their aggregation states into a byte array.

   Conversions:

   - To form 1:

     Convert to form 2 first, and then to 1.

   - To form 2:

     `wrapperFor()`/`wrap()` method of `HiveInspectors`

Here're some micro-benchmark results produced by the most recent master and this PR branch.

Master:

```
Java HotSpot(TM) 64-Bit Server VM 1.8.0_92-b14 on Mac OS X 10.10.5
Intel(R) Core(TM) i7-4960HQ CPU  2.60GHz

hive udaf vs spark af:                   Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
w/o groupBy                                    339 /  372          3.1         323.2       1.0X
w/ groupBy                                     503 /  529          2.1         479.7       0.7X
```

This PR:

```
Java HotSpot(TM) 64-Bit Server VM 1.8.0_92-b14 on Mac OS X 10.10.5
Intel(R) Core(TM) i7-4960HQ CPU  2.60GHz

hive udaf vs spark af:                   Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
w/o groupBy                                    116 /  126          9.0         110.8       1.0X
w/ groupBy                                     151 /  159          6.9         144.0       0.8X
```

Benchmark code snippet:

```scala
  test("Hive UDAF benchmark") {
    val N = 1 << 20

    sparkSession.sql(s"CREATE TEMPORARY FUNCTION hive_max AS '${classOf[GenericUDAFMax].getName}'")

    val benchmark = new Benchmark(
      name = "hive udaf vs spark af",
      valuesPerIteration = N,
      minNumIters = 5,
      warmupTime = 5.seconds,
      minTime = 5.seconds,
      outputPerIteration = true
    )

    benchmark.addCase("w/o groupBy") { _ =>
      sparkSession.range(N).agg("id" -> "hive_max").collect()
    }

    benchmark.addCase("w/ groupBy") { _ =>
      sparkSession.range(N).groupBy($"id" % 10).agg("id" -> "hive_max").collect()
    }

    benchmark.run()

    sparkSession.sql(s"DROP TEMPORARY FUNCTION IF EXISTS hive_max")
  }
```

## How was this patch tested?

New test suite `HiveUDAFSuite` is added.

Author: Cheng Lian <[email protected]>

Closes apache#15703 from liancheng/partial-agg-hive-udaf.
  • Loading branch information
liancheng authored and yhuai committed Nov 16, 2016
1 parent a36a76a commit 2ca8ae9
Show file tree
Hide file tree
Showing 2 changed files with 301 additions and 50 deletions.
199 changes: 149 additions & 50 deletions sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUDFs.scala
Original file line number Diff line number Diff line change
Expand Up @@ -17,16 +17,18 @@

package org.apache.spark.sql.hive

import java.nio.ByteBuffer

import scala.collection.JavaConverters._
import scala.collection.mutable.ArrayBuffer

import org.apache.hadoop.hive.ql.exec._
import org.apache.hadoop.hive.ql.udf.{UDFType => HiveUDFType}
import org.apache.hadoop.hive.ql.udf.generic._
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator.AggregationBuffer
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF._
import org.apache.hadoop.hive.ql.udf.generic.GenericUDFUtils.ConversionHelper
import org.apache.hadoop.hive.serde2.objectinspector.{ConstantObjectInspector, ObjectInspector,
ObjectInspectorFactory}
import org.apache.hadoop.hive.serde2.objectinspector.{ConstantObjectInspector, ObjectInspector, ObjectInspectorFactory}
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions

import org.apache.spark.internal.Logging
Expand Down Expand Up @@ -58,7 +60,7 @@ private[hive] case class HiveSimpleUDF(

@transient
private lazy val isUDFDeterministic = {
val udfType = function.getClass().getAnnotation(classOf[HiveUDFType])
val udfType = function.getClass.getAnnotation(classOf[HiveUDFType])
udfType != null && udfType.deterministic()
}

Expand All @@ -75,7 +77,7 @@ private[hive] case class HiveSimpleUDF(

@transient
lazy val unwrapper = unwrapperFor(ObjectInspectorFactory.getReflectionObjectInspector(
method.getGenericReturnType(), ObjectInspectorOptions.JAVA))
method.getGenericReturnType, ObjectInspectorOptions.JAVA))

@transient
private lazy val cached: Array[AnyRef] = new Array[AnyRef](children.length)
Expand Down Expand Up @@ -263,8 +265,35 @@ private[hive] case class HiveGenericUDTF(
}

/**
* Currently we don't support partial aggregation for queries using Hive UDAF, which may hurt
* performance a lot.
* While being evaluated by Spark SQL, the aggregation state of a Hive UDAF may be in the following
* three formats:
*
* 1. An instance of some concrete `GenericUDAFEvaluator.AggregationBuffer` class
*
* This is the native Hive representation of an aggregation state. Hive `GenericUDAFEvaluator`
* methods like `iterate()`, `merge()`, `terminatePartial()`, and `terminate()` use this format.
* We call these methods to evaluate Hive UDAFs.
*
* 2. A Java object that can be inspected using the `ObjectInspector` returned by the
* `GenericUDAFEvaluator.init()` method.
*
* Hive uses this format to produce a serializable aggregation state so that it can shuffle
* partial aggregation results. Whenever we need to convert a Hive `AggregationBuffer` instance
* into a Spark SQL value, we have to convert it to this format first and then do the conversion
* with the help of `ObjectInspector`s.
*
* 3. A Spark SQL value
*
* We use this format for serializing Hive UDAF aggregation states on Spark side. To be more
* specific, we convert `AggregationBuffer`s into equivalent Spark SQL values, write them into
* `UnsafeRow`s, and then retrieve the byte array behind those `UnsafeRow`s as serialization
* results.
*
* We may use the following methods to convert the aggregation state back and forth:
*
* - `wrap()`/`wrapperFor()`: from 3 to 1
* - `unwrap()`/`unwrapperFor()`: from 1 to 3
* - `GenericUDAFEvaluator.terminatePartial()`: from 2 to 3
*/
private[hive] case class HiveUDAFFunction(
name: String,
Expand All @@ -273,89 +302,89 @@ private[hive] case class HiveUDAFFunction(
isUDAFBridgeRequired: Boolean = false,
mutableAggBufferOffset: Int = 0,
inputAggBufferOffset: Int = 0)
extends ImperativeAggregate with HiveInspectors {
extends TypedImperativeAggregate[GenericUDAFEvaluator.AggregationBuffer] with HiveInspectors {

override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): ImperativeAggregate =
copy(mutableAggBufferOffset = newMutableAggBufferOffset)

override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): ImperativeAggregate =
copy(inputAggBufferOffset = newInputAggBufferOffset)

// Hive `ObjectInspector`s for all child expressions (input parameters of the function).
@transient
private lazy val resolver =
if (isUDAFBridgeRequired) {
private lazy val inputInspectors = children.map(toInspector).toArray

// Spark SQL data types of input parameters.
@transient
private lazy val inputDataTypes: Array[DataType] = children.map(_.dataType).toArray

private def newEvaluator(): GenericUDAFEvaluator = {
val resolver = if (isUDAFBridgeRequired) {
new GenericUDAFBridge(funcWrapper.createFunction[UDAF]())
} else {
funcWrapper.createFunction[AbstractGenericUDAFResolver]()
}

@transient
private lazy val inspectors = children.map(toInspector).toArray

@transient
private lazy val functionAndInspector = {
val parameterInfo = new SimpleGenericUDAFParameterInfo(inspectors, false, false)
val f = resolver.getEvaluator(parameterInfo)
f -> f.init(GenericUDAFEvaluator.Mode.COMPLETE, inspectors)
val parameterInfo = new SimpleGenericUDAFParameterInfo(inputInspectors, false, false)
resolver.getEvaluator(parameterInfo)
}

// The UDAF evaluator used to consume raw input rows and produce partial aggregation results.
@transient
private lazy val function = functionAndInspector._1
private lazy val partial1ModeEvaluator = newEvaluator()

// Hive `ObjectInspector` used to inspect partial aggregation results.
@transient
private lazy val wrappers = children.map(x => wrapperFor(toInspector(x), x.dataType)).toArray
private val partialResultInspector = partial1ModeEvaluator.init(
GenericUDAFEvaluator.Mode.PARTIAL1,
inputInspectors
)

// The UDAF evaluator used to merge partial aggregation results.
@transient
private lazy val returnInspector = functionAndInspector._2
private lazy val partial2ModeEvaluator = {
val evaluator = newEvaluator()
evaluator.init(GenericUDAFEvaluator.Mode.PARTIAL2, Array(partialResultInspector))
evaluator
}

// Spark SQL data type of partial aggregation results
@transient
private lazy val unwrapper = unwrapperFor(returnInspector)
private lazy val partialResultDataType = inspectorToDataType(partialResultInspector)

// The UDAF evaluator used to compute the final result from a partial aggregation result objects.
@transient
private[this] var buffer: GenericUDAFEvaluator.AggregationBuffer = _

override def eval(input: InternalRow): Any = unwrapper(function.evaluate(buffer))
private lazy val finalModeEvaluator = newEvaluator()

// Hive `ObjectInspector` used to inspect the final aggregation result object.
@transient
private lazy val inputProjection = new InterpretedProjection(children)
private val returnInspector = finalModeEvaluator.init(
GenericUDAFEvaluator.Mode.FINAL,
Array(partialResultInspector)
)

// Wrapper functions used to wrap Spark SQL input arguments into Hive specific format.
@transient
private lazy val cached = new Array[AnyRef](children.length)
private lazy val inputWrappers = children.map(x => wrapperFor(toInspector(x), x.dataType)).toArray

// Unwrapper function used to unwrap final aggregation result objects returned by Hive UDAFs into
// Spark SQL specific format.
@transient
private lazy val inputDataTypes: Array[DataType] = children.map(_.dataType).toArray

// Hive UDAF has its own buffer, so we don't need to occupy a slot in the aggregation
// buffer for it.
override def aggBufferSchema: StructType = StructType(Nil)

override def update(_buffer: InternalRow, input: InternalRow): Unit = {
val inputs = inputProjection(input)
function.iterate(buffer, wrap(inputs, wrappers, cached, inputDataTypes))
}

override def merge(buffer1: InternalRow, buffer2: InternalRow): Unit = {
throw new UnsupportedOperationException(
"Hive UDAF doesn't support partial aggregate")
}
private lazy val resultUnwrapper = unwrapperFor(returnInspector)

override def initialize(_buffer: InternalRow): Unit = {
buffer = function.getNewAggregationBuffer
}

override val aggBufferAttributes: Seq[AttributeReference] = Nil
@transient
private lazy val cached: Array[AnyRef] = new Array[AnyRef](children.length)

// Note: although this simply copies aggBufferAttributes, this common code can not be placed
// in the superclass because that will lead to initialization ordering issues.
override val inputAggBufferAttributes: Seq[AttributeReference] = Nil
@transient
private lazy val aggBufferSerDe: AggregationBufferSerDe = new AggregationBufferSerDe

// We rely on Hive to check the input data types, so use `AnyDataType` here to bypass our
// catalyst type checking framework.
override def inputTypes: Seq[AbstractDataType] = children.map(_ => AnyDataType)

override def nullable: Boolean = true

override def supportsPartial: Boolean = false
override def supportsPartial: Boolean = true

override lazy val dataType: DataType = inspectorToDataType(returnInspector)

Expand All @@ -365,4 +394,74 @@ private[hive] case class HiveUDAFFunction(
val distinct = if (isDistinct) "DISTINCT " else " "
s"$name($distinct${children.map(_.sql).mkString(", ")})"
}

override def createAggregationBuffer(): AggregationBuffer =
partial1ModeEvaluator.getNewAggregationBuffer

@transient
private lazy val inputProjection = UnsafeProjection.create(children)

override def update(buffer: AggregationBuffer, input: InternalRow): Unit = {
partial1ModeEvaluator.iterate(
buffer, wrap(inputProjection(input), inputWrappers, cached, inputDataTypes))
}

override def merge(buffer: AggregationBuffer, input: AggregationBuffer): Unit = {
// The 2nd argument of the Hive `GenericUDAFEvaluator.merge()` method is an input aggregation
// buffer in the 3rd format mentioned in the ScalaDoc of this class. Originally, Hive converts
// this `AggregationBuffer`s into this format before shuffling partial aggregation results, and
// calls `GenericUDAFEvaluator.terminatePartial()` to do the conversion.
partial2ModeEvaluator.merge(buffer, partial1ModeEvaluator.terminatePartial(input))
}

override def eval(buffer: AggregationBuffer): Any = {
resultUnwrapper(finalModeEvaluator.terminate(buffer))
}

override def serialize(buffer: AggregationBuffer): Array[Byte] = {
// Serializes an `AggregationBuffer` that holds partial aggregation results so that we can
// shuffle it for global aggregation later.
aggBufferSerDe.serialize(buffer)
}

override def deserialize(bytes: Array[Byte]): AggregationBuffer = {
// Deserializes an `AggregationBuffer` from the shuffled partial aggregation phase to prepare
// for global aggregation by merging multiple partial aggregation results within a single group.
aggBufferSerDe.deserialize(bytes)
}

// Helper class used to de/serialize Hive UDAF `AggregationBuffer` objects
private class AggregationBufferSerDe {
private val partialResultUnwrapper = unwrapperFor(partialResultInspector)

private val partialResultWrapper = wrapperFor(partialResultInspector, partialResultDataType)

private val projection = UnsafeProjection.create(Array(partialResultDataType))

private val mutableRow = new GenericInternalRow(1)

def serialize(buffer: AggregationBuffer): Array[Byte] = {
// `GenericUDAFEvaluator.terminatePartial()` converts an `AggregationBuffer` into an object
// that can be inspected by the `ObjectInspector` returned by `GenericUDAFEvaluator.init()`.
// Then we can unwrap it to a Spark SQL value.
mutableRow.update(0, partialResultUnwrapper(partial1ModeEvaluator.terminatePartial(buffer)))
val unsafeRow = projection(mutableRow)
val bytes = ByteBuffer.allocate(unsafeRow.getSizeInBytes)
unsafeRow.writeTo(bytes)
bytes.array()
}

def deserialize(bytes: Array[Byte]): AggregationBuffer = {
// `GenericUDAFEvaluator` doesn't provide any method that is capable to convert an object
// returned by `GenericUDAFEvaluator.terminatePartial()` back to an `AggregationBuffer`. The
// workaround here is creating an initial `AggregationBuffer` first and then merge the
// deserialized object into the buffer.
val buffer = partial2ModeEvaluator.getNewAggregationBuffer
val unsafeRow = new UnsafeRow(1)
unsafeRow.pointTo(bytes, bytes.length)
val partialResult = unsafeRow.get(0, partialResultDataType)
partial2ModeEvaluator.merge(buffer, partialResultWrapper(partialResult))
buffer
}
}
}
Loading

0 comments on commit 2ca8ae9

Please sign in to comment.