Skip to content

Latest commit

 

History

History
31 lines (31 loc) · 1.14 KB

README.md

File metadata and controls

31 lines (31 loc) · 1.14 KB

Device-wise Federated Network Pruning

PyTorch Implementation of Device-wise Federated Network Pruning (CVPR 2024).

Requirements

pytorch
torchvision

Usage

To train a DWNP base model

CUDA_VISIBLE_DEVICES=0,1 python co_train.py --gpu_visible 0,1 \
--world_size 10 --local_steps 5 --hyper_interval 5 --p 0.8 --model_name resnet56 \
--d_p 0.5 --method dynamic --start_epoch 20 --epoch 200

To prune the model

python pruning_resnet.py --method dynamic

To finetune the model

CUDA_VISIBLE_DEVICES=0,1 python train_model.py --gpu_visible 0,1 --world_size 10 \
 --train_base False --warmup True --sch cos --lr 0.125

Citation

If you found this repository is helpful, please consider to cite our paper:

@inproceedings{gao2024device,
  title={Device-Wise Federated Network Pruning},
  author={Gao, Shangqian and Li, Junyi and Zhang, Zeyu and Zhang, Yanfu and Cai, Weidong and Huang, Heng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12342--12352},
  year={2024}
}