Skip to content

gaosh/DWNP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

4ddfbbe · Feb 22, 2025

History

3 Commits
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Nov 18, 2024
Sep 7, 2024
Feb 22, 2025
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024
Sep 7, 2024

Repository files navigation

Device-wise Federated Network Pruning

PyTorch Implementation of Device-wise Federated Network Pruning (CVPR 2024).

Requirements

pytorch
torchvision

Usage

To train a DWNP base model

CUDA_VISIBLE_DEVICES=0,1 python co_train.py --gpu_visible 0,1 \
--world_size 10 --local_steps 5 --hyper_interval 5 --p 0.8 --model_name resnet56 \
--d_p 0.5 --method dynamic --start_epoch 20 --epoch 200

To prune the model

python pruning_resnet.py --method dynamic

To finetune the model

CUDA_VISIBLE_DEVICES=0,1 python train_model.py --gpu_visible 0,1 --world_size 10 \
 --train_base False --warmup True --sch cos --lr 0.125

Citation

If you found this repository is helpful, please consider to cite our paper:

@inproceedings{gao2024device,
  title={Device-Wise Federated Network Pruning},
  author={Gao, Shangqian and Li, Junyi and Zhang, Zeyu and Zhang, Yanfu and Cai, Weidong and Huang, Heng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12342--12352},
  year={2024}
}

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published