-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_pm.py
188 lines (154 loc) · 7.83 KB
/
resnet_pm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from train import *
from utils import *
#from models.resnet_gate import ResNet as ResNet_gate
from models.resnet_hyper import ResNet as ResNet_hyper
from models.hypernet import Simplified_Gate, PP_Net, Episodic_mem, Simple_PN, HyperStructure
from torch.optim.lr_scheduler import MultiStepLR
import argparse
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
from data_util import partition_data
from optimizer import AdamW
from torch.multiprocessing import Process
import torch.distributed as dist
def init_processes(rank, size, args, fn, backend='gloo'):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '24121'
gpus = args.gpu_visible.split(',')
num_gpus = len(gpus)
os.environ["CUDA_VISIBLE_DEVICES"] = gpus[rank % num_gpus]
# os.environ["CUDA_VISIBLE_DEVICES"] = '6' if rank > 16 else '3'
dist.init_process_group(backend, rank=rank, world_size=size)
fn(args)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def run(args):
rank = dist.get_rank()
size = dist.get_world_size()
depth = args.depth
model_name = 'resnet'
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
cls_per_client = 10 // size
assert cls_per_client > 0
# if rank == 0:
# class_idx = set(np.arange(5))
# else:
# class_idx = set(np.arange(5, 10))
class_idx = set(np.arange(cls_per_client*rank,cls_per_client*(rank+1)))
trainset = torchvision.datasets.CIFAR10(root='./datasets/cifar10/', train=True, download=True, transform=transform_train)
# idx = [tgt in class_idx for tgt in trainset.targets]
# idx = np.arange(len(trainset.targets))[idx]
# print(idx[:10])
# trainset.targets = [trainset.targets[id] for id in idx]
# trainset.data = [trainset.data[id] for id in idx]
# train_sampler,val_sampler = TrainVal_split(trainset, 0.1, shuffle_dataset=True)
dataset_size = len(trainset.targets)
args.num_iter = int(0.1*dataset_size) // args.batch_size
if args.partition == 'class':
idx = [tgt in class_idx for tgt in trainset.targets]
idx = np.arange(len(trainset.targets))[idx]
print(idx[:10])
trainset.targets = [trainset.targets[id] for id in idx]
trainset.data = [trainset.data[id] for id in idx]
elif args.partition == 'hetero-dir':
# if rank==0:
net_dataidx_map = partition_data(trainset, args=args)
trainset.targets = [trainset.targets[id] for id in net_dataidx_map[rank]]
trainset.data = [trainset.data[id] for id in net_dataidx_map[rank]]
print(len(trainset.targets))
train_sampler, val_sampler = TrainVal_split(trainset, 0.1, shuffle_dataset=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, num_workers=2,shuffle=True)
validloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size//size, num_workers=2,sampler=val_sampler)
testset = torchvision.datasets.CIFAR10(root='./datasets/cifar10/', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
net = ResNet_hyper(depth=depth, gate_flag=True, norm_layer=nn.GroupNorm)
width, structure = net.count_structure()
# hyper_net = HyperStructure(structure=structure, T=0.4, base=args.base)
if args.hn_arch == 'simple':
hyper_net = Simplified_Gate(structure=structure, T=0.4, base=args.base)
else:
hyper_net = HyperStructure(structure=structure, T=0.4, base=args.base)
# if rank==0:
# print(hyper_net)
stat_dict = torch.load('./checkpoint/%s-base.pth.tar'%(model_name+str(depth)))
net.load_state_dict(stat_dict['net'])
net.foreze_weights()
size_out, size_kernel, size_group, size_inchannel, size_outchannel = get_middle_Fsize_resnet(net)
resource_reg = Flops_constraint_resnet(args.p, size_kernel, size_out, size_group, size_inchannel, size_outchannel,
w=args.reg_w, HN=True,structure=structure,)
Epoch = args.epoch
hyper_net.cuda()
net.cuda()
# filter(lambda p: p.requires_grad, hyper_net.parameters())
if args.opt == 'AdamW':
if args.hn_arch == 'simple':
hyper_optimizer = optim.AdamW(filter(lambda p: p.requires_grad, hyper_net.parameters()), lr=1e-2,
weight_decay=1e-3)
else:
hyper_optimizer = optim.AdamW(filter(lambda p: p.requires_grad, hyper_net.parameters()), lr=1e-3,
weight_decay=1e-2)
elif args.opt == 'Momentum':
optimizer = optim.SGD(filter(lambda p: p.requires_grad, hyper_net.parameters()), lr=0.1, momentum=0.9)
# print(optimizer)
scheduler = MultiStepLR(optimizer, milestones=[int(Epoch*0.8)], gamma=0.1)
best_acc = 0
if rank == 0:
valid(0, net, testloader, best_acc, hyper_net=None, model_string=None, stage='valid_model',)
for epoch in range(Epoch):
train_hyper(epoch, net, validloader, optimizer, hyper_net=hyper_net, resource_constraint=resource_reg, args=args)
# train_epm(validloader, net, optimizer, optimizer_p, epoch, args, resource_constraint=resource_reg, hyper_net=hyper_net,
# pp_net=pp_net, epm=ep_mem, ep_bn=64, orth_grad=args.orth_grad,use_sampler=args.sampling, loss_type=args.pn_loss)
scheduler.step()
if rank == 0:
best_acc = valid(epoch, net, testloader, best_acc, hyper_net=hyper_net, model_string='%s-pruned'%(model_name+str(depth)), stage='valid_model',)
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--opt', default='Momentum', choices=['SGD', 'Momentum', 'Adam', 'AdamW'])
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
#parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--stage', default='train-gate', type=str)
parser.add_argument('--p', default=0.5, type=float)
parser.add_argument('--depth', default=56, type=int)
parser.add_argument('--epoch', default=200, type=int)
parser.add_argument('--reg_w', default=2, type=float)
parser.add_argument('--base', default=3.0, type=float)
parser.add_argument('--hn_arch', default='hn', type=str)
parser.add_argument('--local_steps', default=5, type=int)
parser.add_argument('--world_size', default=2, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--partition', default='hetero-dir',choices=['hetero-dir', 'class', 'homo'])
parser.add_argument('--gpu_visible', default='1', type=str)
# parser.add_argument('--nf', default=1.0, type=float)
# parser.add_argument('--epm_flag', default=False, type=bool)
# parser.add_argument('--loss', default='log', type=str)
# parser.add_argument('--pn_type', default='pn', type=str)
# parser.add_argument('--sampling', default=True, type=str2bool)
# parser.add_argument('--orth_grad', default=True, type=str2bool)
# parser.add_argument('--pn_loss', default='mae', type=str)
args = parser.parse_args()
size = args.world_size
processes = []
for rank in range(size):
p = Process(target=init_processes, args=(rank, size, args, run))
p.start()
processes.append(p)
for p in processes:
p.join()