Skip to content

Commit

Permalink
updated links + CS229
Browse files Browse the repository at this point in the history
  • Loading branch information
clarecorthell committed Apr 1, 2016
1 parent a889800 commit 7f357e3
Showing 1 changed file with 13 additions and 16 deletions.
29 changes: 13 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ Out of personal preference and need for focus, I geared the original curriculum
(http://www.quora.com/What-are-some-good-resources-for-learning-about-numerical-analysis)

* **Linear Algebra & Programming**
* Linear Algebra [Khan Academy / Videos](https://www.khanacademy.org/math/linear-algebra)
* Linear Algebra [Khan Academy / Videos](http://bit.ly/khanlinalg)
* Linear Algebra / Levandosky [Stanford / Book ```$10```](http://amzn.to/1kIfmmI)
* Linear Programming (Math 407) [University of Washington / Course](http://bit.ly/course-uw-linearprogramming)
* The Manga Guide to Linear Algebra [Book ```$19```](http://amzn.to/1n4hM5l)
Expand All @@ -81,7 +81,7 @@ Out of personal preference and need for focus, I geared the original curriculum

### Computing

Get your environment up and running with the [Data Science Toolbox](http://datasciencetoolbox.org)
Get your environment up and running with the [Data Science Toolbox](http://bit.ly/datascitoolbox)

* **Algorithms**
* Algorithms Design & Analysis I [Stanford / Coursera](http://bit.ly/coursera-algo)
Expand All @@ -93,7 +93,7 @@ Get your environment up and running with the [Data Science Toolbox](http://datas

* **Databases**
* Introduction to Databases [Stanford / Online Course](https://bit.ly/introdatabases)
* SQL School [Mode Analytics / Tutorials](http://sqlschool.modeanalytics.com/)
* SQL School [Mode Analytics / Tutorials](http://bit.ly/modesqlschool)
* SQL Tutorials [SQLZOO / Tutorials](http://bit.ly/tut-sqlzoo)

* **Data Mining**
Expand All @@ -107,36 +107,37 @@ _OSDSM Specialization: [Web Scraping & Crawling](https://github.com/datasciencem

_Foundational & Theoretical_
* Machine Learning [Ng Stanford / Coursera](http://bit.ly/stanford-ml)
* A Course in Machine Learning [UMD / Digital Book](http://ciml.info/)
* Machine Learning [Stanford CS 229](http://bit.ly/stanfordcs229)
* A Course in Machine Learning [UMD / Digital Book](http://bit.ly/22WyV3N)
* The Elements of Statistical Learning / Stanford [Digital](http://bit.ly/ebook-elemstatlearn) & [Book ```$80```](http://amzn.to/1hmyKry) & [Study Group](http://www.reddit.com/r/eosl)
* Machine Learning [Caltech / Edx](http://bit.ly/caltech-ml)

_Practical_
* Programming Collective Intelligence [Book ```$27```](http://amzn.to/1mqxYqW)
* Machine Learning for Hackers [ipynb / digital book](http://nbviewer.ipython.org/github/carljv/Will_it_Python/blob/master/MLFH/CH1/chapter1.ipynb)
* Machine Learning for Hackers [ipynb / digital book](http://bit.ly/mlforhackers)
* Intro to scikit-learn, SciPy2013 [youtube tutorials](http://bit.ly/scikit-video-tuts)

* **Probabilistic Modeling**
* Probabilistic Programming and Bayesian Methods for Hackers [Github / Tutorials](http://bit.ly/ipnb-probabilisticprogramming)
* Probabilistic Graphical Models [Stanford / Coursera](http://bit.ly/stanford-pgm)

* **Deep Learning (Neural Networks)**
* Neural Networks [Andrej Karpathy / Python Walkthrough](http://karpathy.github.io/neuralnets/)
* Neural Networks [Andrej Karpathy / Python Walkthrough](http://bit.ly/karpathyneuralnets)
* Neural Networks [U Toronto / Coursera](http://bit.ly/utoronto-neuralnets)

* **Social Network & Graph Analysis**
* Social and Economic Networks: Models and Analysis / [Stanford / Coursera](http://bit.ly/stanford-socialeconnetworks)
* Social Network Analysis for Startups [Book ```$22```](http://amzn.to/1jySCCT)

* **Natural Language Processing**
* From Languages to Information / Stanford CS147 [Materials](http://web.stanford.edu/class/cs124/)
* From Languages to Information / Stanford CS147 [Materials](http://bit.ly/nlpcs124)
* NLP with Python (NLTK library) [Digital](http://bit.ly/ebook-nltk), [Book ```$36```](http://amzn.to/1iMrDIp)

* **Analysis**
* Python for Data Analysis [Book ```$24```](http://amzn.to/Q2pI5I)
* Big Data Analysis with Twitter [UC Berkeley / Lectures](http://bit.ly/cal-course-bigdatatwitter)
* Exploratory Data Analysis [Tukey / Book ```$81```](http://amzn.to/1kNUEPa)
* An Example Data Science Process [ipynb](http://nbviewer.ipython.org/github/Jay-Oh-eN/happy-healthy-hungry/blob/master/h3.ipynb)
* An Example Data Science Process [ipynb](http://bit.ly/ipydsprocess)

### Data Design

Expand Down Expand Up @@ -174,7 +175,7 @@ Installing Basic Packages [Python, virtualenv, NumPy, SciPy, matplotlib and IPyt

[Command Line Install Script](https://github.com/fonnesbeck/ScipySuperpack) for Scientific Python Packages

* [Pandas Cookbook](https://github.com/jvns/pandas-cookbook) (data structure library)
* [Pandas Cookbook](http://bit.ly/jvnspandascookbook) (data structure library)

_More Libraries can be found in the ["awesome machine learning"](https://github.com/josephmisiti/awesome-machine-learning#python) repo & in related [specializations](https://github.com/datasciencemasters/go/blob/master/specializations.md)_

Expand All @@ -200,12 +201,12 @@ _More Libraries can be found in the ["awesome machine learning"](https://github.
* [twython](http://bit.ly/py-twython) - Python wrapper for the Twitter API

* **Visualization Packages**
* [matplotlib](http://www.ast.uct.ac.za/~sarblyth/pythonGuide/PythonPlottingBeginnersGuide.pdf) - well-integrated with analysis and data manipulation packages like numpy and pandas
* [matplotlib](http://bit.ly/matplotlib-docs) - well-integrated with analysis and data manipulation packages like numpy and pandas
* [Orange](http://bit.ly/software-orangeviz) - Open source data visualization and analysis for novice and experts. Data mining through visual programming or Python scripting. Components for machine learning. Add-ons for bioinformatics and text mining

* **iPython Data Science Notebooks**
* [Data Science in IPython Notebooks](http://bit.ly/ipynb-ds) (Linear Regression, Logistic Regression, Random Forests, K-Means Clustering)
* [A Gallery of Interesting IPython Notebooks - Pandas for Data Analysis](https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#pandas-for-data-analysis)
* [A Gallery of Interesting IPython Notebooks - Pandas for Data Analysis](http://bit.ly/ipyfordataanalysis)

#### Datasets are now [here](http://bit.ly/osdsm-datasets)

Expand Down Expand Up @@ -249,10 +250,6 @@ Non-Open-Source books, courses, and resources are noted with ```$```.

## Contribute

Please Contribute Your Ideas -- **this is Open Source!**

Please **showcase your own specialization & transcript** by submitting a markdown file pull request in the ```/transcripts``` directory with your name! eg [```clare-corthell-2014.md```](http://bit.ly/U6yVMU)
Please Contribute -- **this is Open Source!**

[Follow me on Twitter @clarecorthell](http://bit.ly/clarecorthelltwitter)

Email me at [[email protected]](mailto:[email protected])

0 comments on commit 7f357e3

Please sign in to comment.