Skip to content

gerryqi/llama-docker-playground

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLaMA Docker Playground

A "Clean and Hygienic" LLaMA Playground, Play LLaMA with 7GB (int8) 10GB (pyllama) or 20GB (official) of VRAM.

How to use

To use this project, we need to do two things:

  • the first thing is to download the model
    • (you can download the LLaMA models from anywhere)
  • and the second thing is to build the image with the docker
    • (saves time compared to downloading from Docker Hub)

Put the Models File in Right Place

Taking the smallest model as an example, you need to place the model related files like this:

.
└── models
    ├── 30B
    │   ├── consolidated.00.pth
    │   ├── consolidated.01.pth
    │   ├── consolidated.02.pth
    │   ├── consolidated.03.pth
    │   └── params.json
    ├── 13B
    │   ├── consolidated.00.pth
    │   ├── consolidated.01.pth
    │   └── params.json
    ├── 7B
    │   ├── consolidated.00.pth
    │   └── params.json
    └── tokenizer.model

Build the LLaMA Docker Playground

If you prefer to use the official authentic model, build the docker image with the following command:

docker build -t soulteary/llama:llama . -f docker/Dockerfile.llama

If you wish to use a model with lower memory requirements, build the docker image with the following command:

docker build -t soulteary/llama:pyllama . -f docker/Dockerfile.pyllama

If you wish to use a model with the minimum memory requirements, build the docker image with the following command:

docker build -t soulteary/llama:int8 . -f docker/Dockerfile.int8

Play with the LLaMA

For official model docker images (7B almost 21GB), use the following command:

docker run --gpus all --ipc=host --ulimit memlock=-1 -v `pwd`/models:/app/models -p 7860:7860 -it --rm soulteary/llama:llama

For lower memory requirements (7B almost 13GB) docker images, use the following command:

docker run --gpus all --ipc=host --ulimit memlock=-1 -v `pwd`/models:/llama_data -p 7860:7860 -it --rm soulteary/llama:pyllama

For the minimum memory requirements (7B almost 7.12GB) docker images, use the following command:

docker run --gpus all --ipc=host --ulimit memlock=-1 -v `pwd`/models:/app/models -p 7860:7860 -it --rm soulteary/llama:int8

Credits

License

Follow the rules of the game and be consistent with the original project.

About

Quick Start LLaMA models, with 7GB (int8) 10GB (pyllama) or 20GB (official) of vRAM.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 92.5%
  • Shell 4.9%
  • Dockerfile 2.6%