forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix logistic regression implementation (#169)
* Fix target value of LogisticRegression * Fix probability calculation in LogisticRegression * Change the default cost function to log-likelihood * Remove redundant round function * Fix for coding standard
- Loading branch information
Showing
2 changed files
with
118 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
106 changes: 106 additions & 0 deletions
106
tests/Phpml/Classification/Linear/LogisticRegressionTest.php
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
<?php | ||
|
||
declare(strict_types=1); | ||
|
||
namespace tests\Phpml\Classification\Linear; | ||
|
||
use Phpml\Classification\Linear\LogisticRegression; | ||
use PHPUnit\Framework\TestCase; | ||
use ReflectionMethod; | ||
use ReflectionProperty; | ||
|
||
class LogisticRegressionTest extends TestCase | ||
{ | ||
public function testPredictSingleSample(): void | ||
{ | ||
// AND problem | ||
$samples = [[0, 0], [1, 0], [0, 1], [1, 1], [0.4, 0.4], [0.6, 0.6]]; | ||
$targets = [0, 0, 0, 1, 0, 1]; | ||
$classifier = new LogisticRegression(); | ||
$classifier->train($samples, $targets); | ||
$this->assertEquals(0, $classifier->predict([0.1, 0.1])); | ||
$this->assertEquals(1, $classifier->predict([0.9, 0.9])); | ||
} | ||
|
||
public function testPredictMultiClassSample(): void | ||
{ | ||
// By use of One-v-Rest, Perceptron can perform multi-class classification | ||
// The samples should be separable by lines perpendicular to the dimensions | ||
$samples = [ | ||
[0, 0], [0, 1], [1, 0], [1, 1], // First group : a cluster at bottom-left corner in 2D | ||
[5, 5], [6, 5], [5, 6], [7, 5], // Second group: another cluster at the middle-right | ||
[3, 10], [3, 10], [3, 8], [3, 9], // Third group : cluster at the top-middle | ||
]; | ||
$targets = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]; | ||
|
||
$classifier = new LogisticRegression(); | ||
$classifier->train($samples, $targets); | ||
$this->assertEquals(0, $classifier->predict([0.5, 0.5])); | ||
$this->assertEquals(1, $classifier->predict([6.0, 5.0])); | ||
$this->assertEquals(2, $classifier->predict([3.0, 9.5])); | ||
} | ||
|
||
public function testPredictProbabilitySingleSample(): void | ||
{ | ||
$samples = [[0, 0], [1, 0], [0, 1], [1, 1], [0.4, 0.4], [0.6, 0.6]]; | ||
$targets = [0, 0, 0, 1, 0, 1]; | ||
$classifier = new LogisticRegression(); | ||
$classifier->train($samples, $targets); | ||
|
||
$property = new ReflectionProperty($classifier, 'classifiers'); | ||
$property->setAccessible(true); | ||
$predictor = $property->getValue($classifier)[0]; | ||
$method = new ReflectionMethod($predictor, 'predictProbability'); | ||
$method->setAccessible(true); | ||
|
||
$zero = $method->invoke($predictor, [0.1, 0.1], 0); | ||
$one = $method->invoke($predictor, [0.1, 0.1], 1); | ||
$this->assertEquals(1, $zero + $one, null, 1e-6); | ||
$this->assertTrue($zero > $one); | ||
|
||
$zero = $method->invoke($predictor, [0.9, 0.9], 0); | ||
$one = $method->invoke($predictor, [0.9, 0.9], 1); | ||
$this->assertEquals(1, $zero + $one, null, 1e-6); | ||
$this->assertTrue($zero < $one); | ||
} | ||
|
||
public function testPredictProbabilityMultiClassSample(): void | ||
{ | ||
$samples = [ | ||
[0, 0], [0, 1], [1, 0], [1, 1], | ||
[5, 5], [6, 5], [5, 6], [6, 6], | ||
[3, 10], [3, 10], [3, 8], [3, 9], | ||
]; | ||
$targets = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]; | ||
|
||
$classifier = new LogisticRegression(); | ||
$classifier->train($samples, $targets); | ||
|
||
$property = new ReflectionProperty($classifier, 'classifiers'); | ||
$property->setAccessible(true); | ||
|
||
$predictor = $property->getValue($classifier)[0]; | ||
$method = new ReflectionMethod($predictor, 'predictProbability'); | ||
$method->setAccessible(true); | ||
$zero = $method->invoke($predictor, [3.0, 9.5], 0); | ||
$not_zero = $method->invoke($predictor, [3.0, 9.5], 'not_0'); | ||
|
||
$predictor = $property->getValue($classifier)[1]; | ||
$method = new ReflectionMethod($predictor, 'predictProbability'); | ||
$method->setAccessible(true); | ||
$one = $method->invoke($predictor, [3.0, 9.5], 1); | ||
$not_one = $method->invoke($predictor, [3.0, 9.5], 'not_1'); | ||
|
||
$predictor = $property->getValue($classifier)[2]; | ||
$method = new ReflectionMethod($predictor, 'predictProbability'); | ||
$method->setAccessible(true); | ||
$two = $method->invoke($predictor, [3.0, 9.5], 2); | ||
$not_two = $method->invoke($predictor, [3.0, 9.5], 'not_2'); | ||
|
||
$this->assertEquals(1, $zero + $not_zero, null, 1e-6); | ||
$this->assertEquals(1, $one + $not_one, null, 1e-6); | ||
$this->assertEquals(1, $two + $not_two, null, 1e-6); | ||
$this->assertTrue($zero < $two); | ||
$this->assertTrue($one < $two); | ||
} | ||
} |