forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request tensorflow#3853 from walkerlala/add-ade20k
add ADE20K dataset
- Loading branch information
Showing
9 changed files
with
357 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
import math | ||
import os | ||
import random | ||
import string | ||
import sys | ||
import build_data | ||
import tensorflow as tf | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
|
||
tf.app.flags.DEFINE_string( | ||
'train_image_folder', | ||
'./ADE20K/ADEChallengeData2016/images/training', | ||
'Folder containing trainng images') | ||
tf.app.flags.DEFINE_string( | ||
'train_image_label_folder', | ||
'./ADE20K/ADEChallengeData2016/annotations/training', | ||
'Folder containing annotations for trainng images') | ||
|
||
tf.app.flags.DEFINE_string( | ||
'val_image_folder', | ||
'./ADE20K/ADEChallengeData2016/images/validation', | ||
'Folder containing validation images') | ||
|
||
tf.app.flags.DEFINE_string( | ||
'val_image_label_folder', | ||
'./ADE20K/ADEChallengeData2016/annotations/validation', | ||
'Folder containing annotations for validation') | ||
|
||
tf.app.flags.DEFINE_string( | ||
'output_dir', './ADE20K/tfrecord', | ||
'Path to save converted SSTable of Tensorflow example') | ||
|
||
_NUM_SHARDS = 4 | ||
|
||
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir): | ||
""" Converts the ADE20k dataset into into tfrecord format (SSTable). | ||
Args: | ||
dataset_split: Dataset split (e.g., train, val). | ||
dataset_dir: Dir in which the dataset locates. | ||
dataset_label_dir: Dir in which the annotations locates. | ||
Raises: | ||
RuntimeError: If loaded image and label have different shape. | ||
""" | ||
|
||
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg')) | ||
random.shuffle(img_names) | ||
seg_names = [] | ||
for f in img_names: | ||
# get the filename without the extension | ||
basename = os.path.basename(f).split(".")[0] | ||
# cover its corresponding *_seg.png | ||
seg = os.path.join(dataset_label_dir, basename+'.png') | ||
seg_names.append(seg) | ||
|
||
num_images = len(img_names) | ||
num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS))) | ||
|
||
image_reader = build_data.ImageReader('jpeg', channels=3) | ||
label_reader = build_data.ImageReader('png', channels=1) | ||
|
||
for shard_id in range(_NUM_SHARDS): | ||
output_filename = os.path.join( | ||
FLAGS.output_dir, | ||
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS)) | ||
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | ||
start_idx = shard_id * num_per_shard | ||
end_idx = min((shard_id + 1) * num_per_shard, num_images) | ||
for i in range(start_idx, end_idx): | ||
sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( | ||
i + 1, num_images, shard_id)) | ||
sys.stdout.flush() | ||
# Read the image. | ||
image_filename = img_names[i] | ||
image_data = tf.gfile.FastGFile(image_filename, 'r').read() | ||
height, width = image_reader.read_image_dims(image_data) | ||
# Read the semantic segmentation annotation. | ||
seg_filename = seg_names[i] | ||
seg_data = tf.gfile.FastGFile(seg_filename, 'r').read() | ||
seg_height, seg_width = label_reader.read_image_dims(seg_data) | ||
if height != seg_height or width != seg_width: | ||
raise RuntimeError('Shape mismatched between image and label.') | ||
# Convert to tf example. | ||
example = build_data.image_seg_to_tfexample( | ||
image_data, img_names[i], height, width, seg_data) | ||
tfrecord_writer.write(example.SerializeToString()) | ||
sys.stdout.write('\n') | ||
sys.stdout.flush() | ||
|
||
def main(unused_argv): | ||
tf.gfile.MakeDirs(FLAGS.output_dir) | ||
_convert_dataset('train', FLAGS.train_image_folder, FLAGS.train_image_label_folder) | ||
_convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder) | ||
|
||
if __name__ == '__main__': | ||
tf.app.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
#!/bin/bash | ||
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
# | ||
# Script to download and preprocess the PASCAL VOC 2012 dataset. | ||
# | ||
# Usage: | ||
# bash ./download_and_convert_ade20k.sh | ||
# | ||
# The folder structure is assumed to be: | ||
# + datasets | ||
# - build_data.py | ||
# - build_ade20k_data.py | ||
# - download_and_convert_ade20k.sh | ||
# + ADE20K | ||
# + tfrecord | ||
# + ADEChallengeData2016 | ||
# + annotations | ||
# + training | ||
# + validation | ||
# + images | ||
# + training | ||
# + validation | ||
|
||
# Exit immediately if a command exits with a non-zero status. | ||
set -e | ||
|
||
CURRENT_DIR=$(pwd) | ||
WORK_DIR="./ADE20K" | ||
mkdir -p "${WORK_DIR}" | ||
cd "${WORK_DIR}" | ||
|
||
# Helper function to download and unpack ADE20K dataset. | ||
download_and_uncompress() { | ||
local BASE_URL=${1} | ||
local FILENAME=${2} | ||
|
||
if [ ! -f "${FILENAME}" ]; then | ||
echo "Downloading ${FILENAME} to ${WORK_DIR}" | ||
wget -nd -c "${BASE_URL}/${FILENAME}" | ||
fi | ||
echo "Uncompressing ${FILENAME}" | ||
unzip "${FILENAME}" | ||
} | ||
|
||
# Download the images. | ||
BASE_URL="http://data.csail.mit.edu/places/ADEchallenge" | ||
FILENAME="ADEChallengeData2016.zip" | ||
|
||
download_and_uncompress "${BASE_URL}" "${FILENAME}" | ||
|
||
cd "${CURRENT_DIR}" | ||
|
||
# Root path for ADE20K dataset. | ||
ADE20K_ROOT="${WORK_DIR}/ADEChallengeData2016" | ||
|
||
# Build TFRecords of the dataset. | ||
# First, create output directory for storing TFRecords. | ||
OUTPUT_DIR="${WORK_DIR}/tfrecord" | ||
mkdir -p "${OUTPUT_DIR}" | ||
|
||
echo "Converting ADE20K dataset..." | ||
python ./build_ade20k_data.py \ | ||
--train_image_folder="${ADE20K_ROOT}/images/training/" \ | ||
--train_image_label_folder="${ADE20K_ROOT}/annotations/training/" \ | ||
--val_image_folder="${ADE20K_ROOT}/images/validation/" \ | ||
--val_image_label_folder="${ADE20K_ROOT}/annotations/validation/" \ | ||
--output_dir="${OUTPUT_DIR}" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.