This repository has been archived by the owner on May 19, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from gkswjdzz/dev
create word cloud
- Loading branch information
Showing
4 changed files
with
568 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
from os import path | ||
from PIL import Image | ||
import numpy as np | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
from wordcloud import WordCloud, STOPWORDS | ||
|
||
import os | ||
import requests | ||
|
||
detectron2_url = 'http://localhost/predictions' | ||
stanfordnlp_url = 'http://localhost:81/analyze' | ||
|
||
mpl.use('agg') | ||
|
||
def postStanfordnlp(filepath, lang) : | ||
""" | ||
input : txt file | ||
lang : ko => model_version : ko_kaist | ||
""" | ||
|
||
files = { | ||
'file' : open(filepath, 'rb') | ||
} | ||
data = { | ||
'model_version' : lang | ||
} | ||
predictions = requests.post(stanfordnlp_url, data= data, files=files) | ||
|
||
text = [] | ||
|
||
ret = predictions.json() | ||
|
||
for key in ret : | ||
for word in ret[key] : | ||
if word['upos'] == 'NOUN': | ||
text.append(word['lemma']) | ||
|
||
txt = ' '.join(text) | ||
|
||
print(txt) | ||
print('end post stanfordnlp') | ||
|
||
return txt | ||
|
||
def generateWordCloud(mask_path, text): | ||
# get data directory (using getcwd() is needed to support running example in generated IPython notebook) | ||
d = path.dirname(__file__) if "__file__" in locals() else os.getcwd() | ||
|
||
# Read the whole text. | ||
#text = open(path.join(d, txt_path)).read() | ||
|
||
# read the mask image | ||
# taken from | ||
# http://www.stencilry.org/stencils/movies/alice%20in%20wonderland/255fk.jpg | ||
alice_mask = np.array(Image.open(path.join(d, mask_path))) | ||
|
||
stopwords = set(STOPWORDS) | ||
stopwords.add("said") | ||
|
||
wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask, | ||
stopwords=stopwords, contour_width=3, contour_color='steelblue') | ||
|
||
# generate word cloud | ||
wc.generate(text) | ||
|
||
# store to file | ||
wc.to_file(path.join(d, "word.png")) | ||
|
||
return "word.png" | ||
def generate_mask(jpg_path): | ||
print('in function generate_mask') | ||
predictions = postDetectron2(jpg_path) | ||
polygons = getPolygons(predictions, None) | ||
|
||
img = Image.open(jpg_path) | ||
img_np = np.array(img) | ||
|
||
print(img_np.shape) | ||
height, width, _ = img_np.shape | ||
|
||
img_np = np.array([255] * (height * width * 3), dtype=np.uint8) | ||
img_np = img_np.reshape(height, width, 3) | ||
|
||
xy = polygons[0]['0'] | ||
print(xy) | ||
fig = plt.figure() | ||
ax = plt.subplot() | ||
ax.imshow(img_np) | ||
ax.axis('off') | ||
ax.add_patch(mpl.patches.Polygon(xy, fill=True, facecolor='k', edgecolor='none', alpha=1.0)) | ||
|
||
fig.savefig('mask.png') | ||
|
||
return 'mask.png' | ||
|
||
def postDetectron2(filepath) : | ||
files = { 'file' : open(filepath, 'rb')} | ||
predictions = requests.post(detectron2_url, files=files) | ||
|
||
return predictions.json() | ||
|
||
def getPolygons(predictions, className) : | ||
polygons = [] | ||
|
||
for idx in predictions.keys() : | ||
polygons.append(predictions[idx]['polygons']) | ||
|
||
return polygons |
Oops, something went wrong.