Skip to content

Commit

Permalink
Merge branch 'master' of https://github.com/wzhe06/Ad-papers
Browse files Browse the repository at this point in the history
  • Loading branch information
wzhe06 committed Jul 14, 2018
2 parents e77a207 + 063b51e commit f821b5e
Show file tree
Hide file tree
Showing 3 changed files with 4 additions and 0 deletions.
Binary file not shown.
Binary file not shown.
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给

### CTR Prediction
CTR预估模型相关问题,作为计算广告的核心,CTR预估永远是研究的热点,下面每一篇都是非常流行的文章,推荐逐一精读
* [Deep & Cross Network for Ad Click Predictions.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20%26%20Cross%20Network%20for%20Ad%20Click%20Predictions.pdf) <br />
Google 在17年发表的 Deep&Cross 网络,类似于 Wide&Deep, 比起 PNN 只做了特征二阶交叉,Deep&Cross 理论上能够做任意高阶的特征交叉
* [Deep Crossing- Web-Scale Modeling without Manually Crafted Combinatorial Features.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Crossing-%20Web-Scale%20Modeling%20without%20Manually%20Crafted%20Combinatorial%20Features.pdf) <br />
* [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
* [[FNN]Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BFNN%5DDeep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
Expand All @@ -51,6 +53,8 @@ Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可
一篇比较简单但是全面的CTR预估的文章,有一定实用性
* [Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Practical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
Facebook的一篇非常出名的文章,GBDT+LR/FM解决CTR预估问题,工程性很强
* [Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Bid-aware%20Gradient%20Descent%20for%20Unbiased%20Learning%20with%20Censored%20Data%20in%20Display%20Advertising.pdf)<br />
RTB 中训练 CTR 模型数据集是赢得出价的广告,预测时的样本却是所有候选的广告,也就是训练集和测试集的分布不一致,这篇文章就是要消除这样的 bias

### Topic Model
话题模型相关文章,PLSA,LDA,进行广告Context特征提取,创意优化经常会用到Topic Model
Expand Down

0 comments on commit f821b5e

Please sign in to comment.