forked from LLNL/lbann
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* LBANN implementation of NASNet * Add references to NASNet and LTFB * Code refactor for integration test, support for interactive allocation, additional code clean up * Add integration test for NASNet
- Loading branch information
1 parent
fbc9d5c
commit 900f30c
Showing
10 changed files
with
1,031 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
# Neural Architecture Search | ||
|
||
This directory contains LBANN implementations of NAS search spaces and search strategies. | ||
First in the series is [NASNet](https://arxiv.org/abs/1707.07012) search space with random (baseline) and [LTFB](https://lbann.readthedocs.io/en/latest/execution_algorithms/ltfb.html) search strategies. | ||
It will eventually contain reference implementations of other search spaces and search strategies. | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# NASNet Search Space https://arxiv.org/pdf/1707.07012.pdf | ||
# code modified from DARTS https://github.com/quark0/darts | ||
import numpy as np | ||
import sys | ||
import os | ||
import time | ||
from collections import namedtuple | ||
import lbann | ||
import lbann.models | ||
import lbann.models.resnet | ||
from search import micro_encoding | ||
from os.path import join | ||
import data.cifar10 | ||
|
||
sys.path.insert(0, os.getenv('PWD')) | ||
import search.model as cifar | ||
|
||
|
||
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') | ||
Genotype_norm = namedtuple('Genotype', 'normal normal_concat') | ||
Genotype_redu = namedtuple('Genotype', 'reduce reduce_concat') | ||
|
||
# what you want to search should be defined here and in micro_operations | ||
PRIMITIVES = [ | ||
'max_pool_3x3', | ||
'avg_pool_3x3', | ||
'skip_connect', | ||
'sep_conv_3x3', | ||
'sep_conv_5x5', | ||
'dil_conv_3x3', | ||
'dil_conv_5x5', | ||
'sep_conv_7x7', | ||
'conv_7x1_1x7', | ||
] | ||
|
||
def generate_genomes(pop_size, | ||
num_blocks=5, | ||
num_ops=7, | ||
num_cells=2): | ||
seed = 0 | ||
np.random.seed(seed) | ||
B, n_ops, n_cell = num_blocks, num_ops, num_cells | ||
networks = [] | ||
genotypes = [] | ||
network_id = 0 | ||
|
||
while len(networks) < pop_size: | ||
bit_string = [] | ||
for c in range(n_cell): | ||
for b in range(B): | ||
bit_string += [np.random.randint(n_ops), | ||
np.random.randint(b + 2), | ||
np.random.randint(n_ops), | ||
np.random.randint(b + 2) | ||
] | ||
|
||
genome = micro_encoding.convert(bit_string) | ||
# check against evaluated networks in case of duplicates | ||
doTrain = True | ||
for network in networks: | ||
if micro_encoding.compare(genome, network): | ||
doTrain = False | ||
break | ||
|
||
if doTrain: | ||
genotype = micro_encoding.decode(genome) | ||
#print("Newtwork id, bitstring, genome, genotype ", network_id, bit_string, genome, genotype) | ||
networks.append(genome) | ||
genotypes.append(genotype) | ||
network_id +=1 | ||
|
||
return genotypes | ||
|
||
|
||
def create_networks(exp_dir, | ||
num_epochs, | ||
mini_batch_size, | ||
pop_size, | ||
use_ltfb=False, | ||
num_blocks=5, | ||
num_ops=7, | ||
num_cells=2, | ||
): | ||
trainer_id = 0 | ||
# Setup shared data reader and optimizer | ||
reader = data.cifar10.make_data_reader(num_classes=10) | ||
opt = lbann.Adam(learn_rate=0.0002,beta1=0.9,beta2=0.99,eps=1e-8) | ||
genotypes = generate_genomes(pop_size,num_blocks,num_ops,num_cells) | ||
for g in genotypes: | ||
mymodel = cifar.NetworkCIFAR(16, 10, 8, False, g) | ||
|
||
images = lbann.Input(data_field='samples') | ||
labels = lbann.Input(data_field='labels') | ||
|
||
preds,_ = mymodel(images) | ||
probs = lbann.Softmax(preds) | ||
cross_entropy = lbann.CrossEntropy(probs, labels) | ||
top1 = lbann.CategoricalAccuracy(probs, labels) | ||
|
||
obj = lbann.ObjectiveFunction([cross_entropy]) | ||
|
||
|
||
metrics = lbann.Metric(top1, name='accuracy', unit='%') | ||
|
||
callbacks = [lbann.CallbackPrint(), | ||
lbann.CallbackTimer()] | ||
|
||
|
||
model = lbann.Model(epochs=num_epochs, | ||
layers=[images,labels], | ||
objective_function=obj, | ||
metrics=metrics, | ||
callbacks=callbacks) | ||
|
||
|
||
# Setup trainer | ||
trainer = lbann.Trainer(mini_batch_size=mini_batch_size) | ||
|
||
if use_ltfb: | ||
print("Using LTFB ") | ||
SGD = lbann.BatchedIterativeOptimizer | ||
RPE = lbann.RandomPairwiseExchange | ||
ES = lbann.RandomPairwiseExchange.ExchangeStrategy(strategy='checkpoint_binary') | ||
metalearning = RPE( | ||
metric_strategies={'accuracy': RPE.MetricStrategy.HIGHER_IS_BETTER}, | ||
exchange_strategy=ES) | ||
ltfb = lbann.LTFB("ltfb", | ||
metalearning=metalearning, | ||
local_algo=SGD("local sgd", num_iterations=625), | ||
metalearning_steps=num_epochs) | ||
|
||
trainer = lbann.Trainer(mini_batch_size=mini_batch_size, | ||
training_algo=ltfb) | ||
|
||
# Export Protobuf file | ||
lbann.proto.save_prototext( | ||
os.path.join(exp_dir, f'experiment.prototext.trainer{trainer_id}'), | ||
model=model, | ||
optimizer=opt, | ||
data_reader=reader, | ||
trainer=trainer) | ||
|
||
trainer_id +=1 | ||
|
||
return trainer, model, reader, opt | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
import numpy as np | ||
import sys | ||
import os | ||
import time | ||
import lbann | ||
import argparse | ||
import lbann.contrib.args | ||
import lbann.contrib.launcher | ||
from os.path import join | ||
import subprocess | ||
|
||
sys.path.insert(0, os.getenv('PWD')) | ||
import cifar_networks | ||
|
||
|
||
# ---------------------------------- | ||
# Command-line arguments | ||
# ---------------------------------- | ||
|
||
desc = ('Micro search on CIFAR10 data using LBANN.') | ||
parser = argparse.ArgumentParser(description=desc) | ||
#lbann.contrib.args.add_scheduler_arguments(parser) | ||
|
||
#NAS parameters | ||
parser.add_argument( | ||
'--num-blocks', action='store', default=5, type=int, | ||
help='Number of blocks per cell (default: 5)') | ||
parser.add_argument( | ||
'--n-ops', action='store', default=7, type=int, | ||
help='Number of operations (default: 7)') | ||
parser.add_argument( | ||
'--n-cell', action='store', default=2, type=int, | ||
help='Number of cells (default: 2)') | ||
|
||
parser.add_argument( | ||
'--use-ltfb', action='store_true', help='Use LTFB') | ||
|
||
#Training (hyper) parameters | ||
parser.add_argument( | ||
'--mini-batch-size', action='store', default=64, type=int, | ||
help='mini-batch size (default: 64)', metavar='NUM') | ||
parser.add_argument( | ||
'--num-epochs', action='store', default=20, type=int, | ||
help='number of epochs (default: 20)', metavar='NUM') | ||
|
||
#Compute (job) parameters | ||
parser.add_argument( | ||
'--nodes', action='store', default=4, type=int, | ||
help='Num of compute nodes (default: 4)') | ||
parser.add_argument( | ||
'--ppn', action='store', default=2, type=int, | ||
help='Processes per node (default: 2)') | ||
parser.add_argument("--ppt", type=int, default=2) | ||
parser.add_argument( | ||
'--job-name', action='store', default='denas_cifar10', type=str, | ||
help='scheduler job name (default: denas_cifar10)') | ||
|
||
parser.add_argument( | ||
'--exp-dir', action='store', default='exp_cifar10', type=str, | ||
help='exp dir (default: exp_cifar10)') | ||
lbann.contrib.args.add_optimizer_arguments(parser, default_learning_rate=0.1) | ||
args = parser.parse_args() | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
tag = 'ltfb' if args.use_ltfb else 'random' | ||
expd = 'search-{}-{}-{}'.format('nasnet-micro-cifar10', tag, time.strftime("%Y%m%d-%H%M%S")) | ||
if not os.path.exists(expd): | ||
os.mkdir(expd) | ||
print('Experiment dir : {}'.format(expd)) | ||
|
||
script = lbann.launcher.make_batch_script(nodes=args.nodes, | ||
procs_per_node=args.ppn, | ||
experiment_dir=expd) | ||
pop_size = int(args.nodes*args.ppn/args.ppt) | ||
|
||
cifar_networks.create_networks(expd, | ||
args.num_epochs, | ||
args.mini_batch_size, | ||
pop_size, | ||
use_ltfb=args.use_ltfb, | ||
num_blocks=args.num_blocks, | ||
num_ops=args.n_ops, | ||
num_cells=args.n_cell) | ||
|
||
proto_file = os.path.join(script.work_dir,'experiment.prototext.trainer0') | ||
command = [ | ||
lbann.lbann_exe(), | ||
f'--procs_per_trainer={args.ppt}', | ||
'--generate_multi_proto', | ||
f'--prototext={proto_file}'] | ||
script.add_parallel_command(command) | ||
|
||
# Run script | ||
script.run(True) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
import os | ||
import os.path | ||
|
||
import google.protobuf.text_format | ||
import lbann | ||
import lbann.contrib.lc.paths | ||
|
||
def make_data_reader(num_classes=10): | ||
|
||
# Load Protobuf message from file | ||
current_dir = os.path.dirname(os.path.realpath(__file__)) | ||
protobuf_file = os.path.join(current_dir, 'data_reader.prototext') | ||
message = lbann.lbann_pb2.LbannPB() | ||
with open(protobuf_file, 'r') as f: | ||
google.protobuf.text_format.Merge(f.read(), message) | ||
message = message.data_reader | ||
|
||
# Check if data paths are accessible | ||
data_dir = lbann.contrib.lc.paths.cifar10_dir() | ||
|
||
if not os.path.isdir(data_dir): | ||
raise FileNotFoundError('could not access {}'.format(data_dir)) | ||
|
||
# Set paths | ||
message.reader[0].data_filedir = data_dir | ||
message.reader[1].data_filedir = data_dir | ||
|
||
return message |
44 changes: 44 additions & 0 deletions
44
applications/nas/nasnet/data/cifar10/data_reader.prototext
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
data_reader { | ||
reader { | ||
name: "cifar10" | ||
role: "train" | ||
shuffle: true | ||
data_filedir: "path/to/cifar10/data" | ||
validation_percent: 0.1 | ||
tournament_percent: 0.1 | ||
absolute_sample_count: 0 | ||
percent_of_data_to_use: 1.0 | ||
|
||
transforms { | ||
horizontal_flip { | ||
p: 0.5 | ||
} | ||
} | ||
transforms { | ||
normalize_to_lbann_layout { | ||
means: "0.44653 0.48216 0.4914" | ||
stddevs: "0.26159 0.24349 0.24703" | ||
} | ||
} | ||
} | ||
reader { | ||
name: "cifar10" | ||
role: "test" | ||
shuffle: true | ||
data_filedir: "path/to/cifar10/data" | ||
absolute_sample_count: 0 | ||
percent_of_data_to_use: 1.0 | ||
|
||
transforms { | ||
horizontal_flip { | ||
p: 0.5 | ||
} | ||
} | ||
transforms { | ||
normalize_to_lbann_layout { | ||
means: "0.44653 0.48216 0.4914" | ||
stddevs: "0.26159 0.24349 0.24703" | ||
} | ||
} | ||
} | ||
} |
Oops, something went wrong.