forked from apache/beam
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[BEAM-9247] Integrate GCP Vision API functionality (apache#10959)
- Loading branch information
Elias Djurfeldt
authored
Feb 26, 2020
1 parent
f9f3159
commit cf3ca68
Showing
4 changed files
with
547 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
# pylint: skip-file | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
""" | ||
A connector for sending API requests to the GCP Vision API. | ||
""" | ||
|
||
from __future__ import absolute_import | ||
|
||
from typing import List | ||
from typing import Optional | ||
from typing import Tuple | ||
from typing import Union | ||
|
||
from future.utils import binary_type | ||
from future.utils import text_type | ||
|
||
from apache_beam import typehints | ||
from apache_beam.metrics import Metrics | ||
from apache_beam.transforms import DoFn | ||
from apache_beam.transforms import FlatMap | ||
from apache_beam.transforms import ParDo | ||
from apache_beam.transforms import PTransform | ||
from apache_beam.transforms import util | ||
from cachetools.func import ttl_cache | ||
|
||
try: | ||
from google.cloud import vision | ||
except ImportError: | ||
raise ImportError( | ||
'Google Cloud Vision not supported for this execution environment ' | ||
'(could not import google.cloud.vision).') | ||
|
||
__all__ = [ | ||
'AnnotateImage', | ||
'AnnotateImageWithContext', | ||
] | ||
|
||
|
||
@ttl_cache(maxsize=128, ttl=3600) | ||
def get_vision_client(client_options=None): | ||
"""Returns a Cloud Vision API client.""" | ||
_client = vision.ImageAnnotatorClient(client_options=client_options) | ||
return _client | ||
|
||
|
||
class AnnotateImage(PTransform): | ||
"""A ``PTransform`` for annotating images using the GCP Vision API. | ||
ref: https://cloud.google.com/vision/docs/ | ||
Batches elements together using ``util.BatchElements`` PTransform and sends | ||
each batch of elements to the GCP Vision API. | ||
Element is a Union[text_type, binary_type] of either an URI (e.g. a GCS URI) | ||
or binary_type base64-encoded image data. | ||
Accepts an `AsDict` side input that maps each image to an image context. | ||
""" | ||
|
||
MAX_BATCH_SIZE = 5 | ||
MIN_BATCH_SIZE = 1 | ||
|
||
def __init__( | ||
self, | ||
features, | ||
retry=None, | ||
timeout=120, | ||
max_batch_size=None, | ||
min_batch_size=None, | ||
client_options=None, | ||
context_side_input=None, | ||
metadata=None): | ||
""" | ||
Args: | ||
features: (List[``vision.types.Feature.enums.Feature``]) Required. | ||
The Vision API features to detect | ||
retry: (google.api_core.retry.Retry) Optional. | ||
A retry object used to retry requests. | ||
If None is specified (default), requests will not be retried. | ||
timeout: (float) Optional. | ||
The time in seconds to wait for the response from the Vision API. | ||
Default is 120. | ||
max_batch_size: (int) Optional. | ||
Maximum number of images to batch in the same request to the Vision API. | ||
Default is 5 (which is also the Vision API max). | ||
This parameter is primarily intended for testing. | ||
min_batch_size: (int) Optional. | ||
Minimum number of images to batch in the same request to the Vision API. | ||
Default is None. This parameter is primarily intended for testing. | ||
client_options: | ||
(Union[dict, google.api_core.client_options.ClientOptions]) Optional. | ||
Client options used to set user options on the client. | ||
API Endpoint should be set through client_options. | ||
context_side_input: (beam.pvalue.AsDict) Optional. | ||
An ``AsDict`` of a PCollection to be passed to the | ||
_ImageAnnotateFn as the image context mapping containing additional | ||
image context and/or feature-specific parameters. | ||
Example usage:: | ||
image_contexts = | ||
[(''gs://cloud-samples-data/vision/ocr/sign.jpg'', Union[dict, | ||
``vision.types.ImageContext()``]), | ||
(''gs://cloud-samples-data/vision/ocr/sign.jpg'', Union[dict, | ||
``vision.types.ImageContext()``]),] | ||
context_side_input = | ||
( | ||
p | ||
| "Image contexts" >> beam.Create(image_contexts) | ||
) | ||
visionml.AnnotateImage(features, | ||
context_side_input=beam.pvalue.AsDict(context_side_input))) | ||
metadata: (Optional[Sequence[Tuple[str, str]]]): Optional. | ||
Additional metadata that is provided to the method. | ||
""" | ||
super(AnnotateImage, self).__init__() | ||
self.features = features | ||
self.retry = retry | ||
self.timeout = timeout | ||
self.max_batch_size = max_batch_size or AnnotateImage.MAX_BATCH_SIZE | ||
if self.max_batch_size > AnnotateImage.MAX_BATCH_SIZE: | ||
raise ValueError( | ||
'Max batch_size exceeded. ' | ||
'Batch size needs to be smaller than {}'.format( | ||
AnnotateImage.MAX_BATCH_SIZE)) | ||
self.min_batch_size = min_batch_size or AnnotateImage.MIN_BATCH_SIZE | ||
self.client_options = client_options | ||
self.context_side_input = context_side_input | ||
self.metadata = metadata | ||
|
||
def expand(self, pvalue): | ||
return ( | ||
pvalue | ||
| FlatMap(self._create_image_annotation_pairs, self.context_side_input) | ||
| util.BatchElements( | ||
min_batch_size=self.min_batch_size, | ||
max_batch_size=self.max_batch_size) | ||
| ParDo( | ||
_ImageAnnotateFn( | ||
features=self.features, | ||
retry=self.retry, | ||
timeout=self.timeout, | ||
client_options=self.client_options, | ||
metadata=self.metadata))) | ||
|
||
@typehints.with_input_types( | ||
Union[text_type, binary_type], Optional[vision.types.ImageContext]) | ||
@typehints.with_output_types(List[vision.types.AnnotateImageRequest]) | ||
def _create_image_annotation_pairs(self, element, context_side_input): | ||
if context_side_input: # If we have a side input image context, use that | ||
image_context = context_side_input.get(element) | ||
else: | ||
image_context = None | ||
|
||
if isinstance(element, text_type): | ||
image = vision.types.Image( | ||
source=vision.types.ImageSource(image_uri=element)) | ||
else: # Typehint checks only allows text_type or binary_type | ||
image = vision.types.Image(content=element) | ||
|
||
request = vision.types.AnnotateImageRequest( | ||
image=image, features=self.features, image_context=image_context) | ||
yield request | ||
|
||
|
||
class AnnotateImageWithContext(AnnotateImage): | ||
"""A ``PTransform`` for annotating images using the GCP Vision API. | ||
ref: https://cloud.google.com/vision/docs/ | ||
Batches elements together using ``util.BatchElements`` PTransform and sends | ||
each batch of elements to the GCP Vision API. | ||
Element is a tuple of:: | ||
(Union[text_type, binary_type], | ||
Optional[``vision.types.ImageContext``]) | ||
where the former is either an URI (e.g. a GCS URI) or binary_type | ||
base64-encoded image data. | ||
""" | ||
def __init__( | ||
self, | ||
features, | ||
retry=None, | ||
timeout=120, | ||
max_batch_size=None, | ||
min_batch_size=None, | ||
client_options=None, | ||
metadata=None): | ||
""" | ||
Args: | ||
features: (List[``vision.types.Feature.enums.Feature``]) Required. | ||
The Vision API features to detect | ||
retry: (google.api_core.retry.Retry) Optional. | ||
A retry object used to retry requests. | ||
If None is specified (default), requests will not be retried. | ||
timeout: (float) Optional. | ||
The time in seconds to wait for the response from the Vision API. | ||
Default is 120. | ||
max_batch_size: (int) Optional. | ||
Maximum number of images to batch in the same request to the Vision API. | ||
Default is 5 (which is also the Vision API max). | ||
This parameter is primarily intended for testing. | ||
min_batch_size: (int) Optional. | ||
Minimum number of images to batch in the same request to the Vision API. | ||
Default is None. This parameter is primarily intended for testing. | ||
client_options: | ||
(Union[dict, google.api_core.client_options.ClientOptions]) Optional. | ||
Client options used to set user options on the client. | ||
API Endpoint should be set through client_options. | ||
metadata: (Optional[Sequence[Tuple[str, str]]]): Optional. | ||
Additional metadata that is provided to the method. | ||
""" | ||
super(AnnotateImageWithContext, self).__init__( | ||
features=features, | ||
retry=retry, | ||
timeout=timeout, | ||
max_batch_size=max_batch_size, | ||
min_batch_size=min_batch_size, | ||
client_options=client_options, | ||
metadata=metadata) | ||
|
||
def expand(self, pvalue): | ||
return ( | ||
pvalue | ||
| FlatMap(self._create_image_annotation_pairs) | ||
| util.BatchElements( | ||
min_batch_size=self.min_batch_size, | ||
max_batch_size=self.max_batch_size) | ||
| ParDo( | ||
_ImageAnnotateFn( | ||
features=self.features, | ||
retry=self.retry, | ||
timeout=self.timeout, | ||
client_options=self.client_options, | ||
metadata=self.metadata))) | ||
|
||
@typehints.with_input_types( | ||
Tuple[Union[text_type, binary_type], Optional[vision.types.ImageContext]]) | ||
@typehints.with_output_types(List[vision.types.AnnotateImageRequest]) | ||
def _create_image_annotation_pairs(self, element, **kwargs): | ||
element, image_context = element # Unpack (image, image_context) tuple | ||
if isinstance(element, text_type): | ||
image = vision.types.Image( | ||
source=vision.types.ImageSource(image_uri=element)) | ||
else: # Typehint checks only allows text_type or binary_type | ||
image = vision.types.Image(content=element) | ||
|
||
request = vision.types.AnnotateImageRequest( | ||
image=image, features=self.features, image_context=image_context) | ||
yield request | ||
|
||
|
||
@typehints.with_input_types(List[vision.types.AnnotateImageRequest]) | ||
class _ImageAnnotateFn(DoFn): | ||
"""A DoFn that sends each input element to the GCP Vision API. | ||
Returns ``google.cloud.vision.types.BatchAnnotateImagesResponse``. | ||
""" | ||
def __init__(self, features, retry, timeout, client_options, metadata): | ||
super(_ImageAnnotateFn, self).__init__() | ||
self._client = None | ||
self.features = features | ||
self.retry = retry | ||
self.timeout = timeout | ||
self.client_options = client_options | ||
self.metadata = metadata | ||
self.counter = Metrics.counter(self.__class__, "API Calls") | ||
|
||
def setup(self): | ||
self._client = get_vision_client(self.client_options) | ||
|
||
def process(self, element, *args, **kwargs): | ||
response = self._client.batch_annotate_images( | ||
requests=element, | ||
retry=self.retry, | ||
timeout=self.timeout, | ||
metadata=self.metadata) | ||
self.counter.inc() | ||
yield response |
Oops, something went wrong.