Skip to content

Paddle Multimodal Integration and eXploration, supporting mainstream multi-modal tasks, including end-to-end large-scale multi-modal pretrain models and diffusion model toolbox. Equipped with high performance and flexibility.

License

Notifications You must be signed in to change notification settings

guoshengCS/PaddleMIX

This branch is 649 commits behind PaddlePaddle/PaddleMIX:develop.

Folders and files

NameName
Last commit message
Last commit date
Aug 14, 2023
Nov 6, 2023
Oct 12, 2023
Nov 6, 2023
Nov 6, 2023
Nov 7, 2023
Oct 7, 2023
Nov 7, 2023
Aug 14, 2023
Aug 14, 2023
Aug 9, 2023
Aug 14, 2023
Jul 12, 2023
Jul 12, 2023
Jul 5, 2023
Nov 6, 2023
Jun 27, 2023
Aug 15, 2023
Nov 6, 2023
Aug 14, 2023

Repository files navigation

简介

PaddleMIX是基于飞桨的跨模态大模型开发套件,聚合图像、文本、视频等多种模态,覆盖视觉语言预训练,文生图,文生视频等丰富的跨模态任务。提供开箱即用的开发体验,同时满足开发者灵活定制需求,探索通用人工智能。

最新进展

2023.10.7 发布 PaddleMIX v1.0

  • 新增图文预训练模型分布式训练能力,BLIP-2支持千亿规模训练
  • 新增跨模态应用流水线AppFlow,一键支持自动标注,图像编辑,音生图等11种跨模态应用
  • PPDiffusers发布 0.19.3 版本,新增SDXL及相关任务

2023.7.31 发布 PaddleMIX v0.1

  • 首次发布PaddleMIX跨模态大模型开发套件,融合PPDiffusers多模态扩散模型工具箱,广泛支持PaddleNLP大语言模型
  • 新增EVA-CLIP,BLIP-2,miniGPT-4,Stable Diffusion,ControlNet等12个跨模态大模型

主要特性

  • 丰富的多模态功能: 覆盖图文预训练,文生图,跨模态视觉任务,实现图像编辑、图像描述、数据标注等多样功能
  • 简洁的开发体验: 模型统一开发接口,高效实现自定义模型开发和功能实现
  • 高效的训推流程: 全量模型打通训练推理一站式开发流程,BLIP-2,Stable Diffusion等重点模型训推性能业界领先
  • 超大规模训练支持: 可训练千亿规模图文预训练模型,百亿规模文生图底座模型

任务展示

  • 视频Demo展示(video Demo)
PaddleMix.mp4

安装

  1. 环境依赖
pip install -r requirements.txt

关于PaddlePaddle安装的详细教程请查看Installation。 如果希望使用bf16训练推理,请使用支持bf16的GPU,如A100。

  1. 手动安装
git clone https://github.com/PaddlePaddle/PaddleMIX
cd PaddleMIX
pip install -e .

教程

特色应用

  1. 艺术风格二维码模型
  1. Mix叠图

模型库

多模态预训练 扩散类模型
  • 图文预训练
  • 开放世界视觉模型
  • 更多模态预训练模型
  • 文生图
  • 文生视频
  • 音频生成
  • 许可证书

    本项目的发布受Apache 2.0 license许可认证。

    About

    Paddle Multimodal Integration and eXploration, supporting mainstream multi-modal tasks, including end-to-end large-scale multi-modal pretrain models and diffusion model toolbox. Equipped with high performance and flexibility.

    Resources

    License

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages

    • Python 97.8%
    • Other 2.2%