Skip to content
/ DRN Public

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

License

Notifications You must be signed in to change notification settings

guoyongcs/DRN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution [arXiv]

Pytorch implementation for "Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution".

Dual Regression Scheme

Important Update

Dependencies

Python>=3.7, PyTorch>=1.1, numpy, skimage, imageio, matplotlib, tqdm

Quickstart (Model Testing)

Results of our pretrained models:

Model Scale #Params (M) PSNR on Set5 (dB)
DRN-S 4 4.8 32.68
8 5.4 27.41
DRN-L 4 9.8 32.74
8 10.0 27.43

You can evaluate our models on several widely used benchmark datasets, including Set5, Set14, B100, Urban100, Manga109. Note that using an old PyTorch version (earlier than 1.1) would yield wrong results.

Please organize the benchmark datasets using the following hierarchy.

- srdata
    - benchmark
         - Set5
            - LR_bicubic
                - X4
                    - babyx4.png

Dual Regression Scheme

You can use the following script to obtain the testing results:

python main.py --data_dir $DATA_DIR$ \
--save $SAVE_DIR$ --data_test $DATA_TEST$ \
--scale $SCALE$ --model $MODEL$ \
--pre_train $PRETRAINED_MODEL$ \
--test_only --save_results
  • DATA_DIR: path to save data
  • SAVE_DIR: path to save experiment results
  • DATA_TEST: the data to be tested, such as Set5, Set14, B100, Urban100, and Manga109
  • SCALE: super resolution scale, such as 4 and 8
  • MODEL: model type, such as DRN-S and DRN-L
  • PRETRAINED_MODEL: path of the pretrained model

For example, you can use the following command to test our DRN-S model for 4x SR.

python main.py --data_dir ~/srdata \
--save ../experiments --data_test Set5 \
--scale 4 --model DRN-S \
--pre_train ../pretrained_models/DRNS4x.pt \
--test_only --save_results

You will obtain the output like this.

An example of model testing.

If you want to load the pretrained dual model, you can add the following option into the command.

--pre_train_dual ../pretrained_models/DRNS4x_dual_model.pt

Training Method

We use DF2K dataset (the combination of DIV2K and Flickr2K datasets) to train DRN-S and DRN-L.

python main.py --data_dir $DATA_DIR$ \
--scale $SCALE$ --model $MODEL$ \
--save $SAVE_DIR$
  • DATA_DIR: path to save data
  • SCALE: super resolution scale, such as 4 and 8
  • MODEL: model type, such as DRN-S and DRN-L
  • SAVE_DIR: path to save experiment results

For example, you can use the following command to train the DRN-S model for 4x SR.

python main.py --data_dir ~/srdata \
--scale 4 --model DRN-S \
--save ../experiments 

Citation

If you use any part of this code in your research, please cite our paper:

@inproceedings{guo2020closed,
  title={Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution},
  author={Guo, Yong and Chen, Jian and Wang, Jingdong and Chen, Qi and Cao, Jiezhang and Deng, Zeshuai and Xu, Yanwu and Tan, Mingkui},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

About

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages