Skip to content
/ DRN Public

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

License

Notifications You must be signed in to change notification settings

guoyongcs/DRN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

Pytorch implementation for "Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution".

Dual Regression Scheme

Dependencies

Python 3.7, PyTorch>=1.1, numpy, skimage, imageio, matplotlib, tqdm

Quickstart (Model Testing)

Results of our [pretrained models][https://github.com/guoyongcs/DRN/releases/tag/v0.1]:

Model Scale #Params (M) PSNR on Set5 (dB)
DRN-S 4 4.8 32.68
8 5.4 27.41
DRN-L 4 9.8 32.74
8 10.0 27.43

You can evaluate our models on several widely used benchmark datasets, including Set5, Set14, B100, Urban100, Manga109. Note that using an old PyTorch version (earlier than 1.1) would yield wrong results.

python main.py --data_dir $DATA_DIR$ --data_test $TEST_DATA$ --scale $SCALE$ --model $MODEL$ --save $SAVE_DIR$ --pre_train $PRETRAINED_MODEL$ --test_only --save_results --calc_ssim
  • DATA_DIR: path to save data
  • SAVE_DIR: path to save experiment results
  • SCALE: super resolution scale, 4 or 8
  • MODEL: model type, DRN-S or DRN-L
  • PRETRAINED_MODEL: path of the pretrained model

Training Method

We use DF2K dataset (the combination of DIV2K and Flickr2K datasets) to train DRN-S and DRN-L.

python main.py --data_dir $DATA_DIR$ --save $SAVE_DIR$ --scale $SCALE$ --model $MODEL$
  • DATA_DIR: path to save data
  • SAVE_DIR: path to save experiment results
  • SCALE: super resolution scale, 4 or 8
  • MODEL: model type, DRN-S or DRN-L

Citation

If you use any part of this code in your research, please cite our paper:

@inproceedings{guo2020closed,
  title={Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution},
  author={Guo, Yong and Chen, Jian and Wang, Jingdong and Chen, Qi and Cao, Jiezhang and Deng, Zeshuai and Xu, Yanwu and Tan, Mingkui},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

About

Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages