Skip to content

HNAS: Hierarchical Neural Architecture Search for Single Image Super-Resolution

License

Notifications You must be signed in to change notification settings

h944146914/HNAS-SR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dependencies

  • Python 3.6
  • PyTorch = 1.0.1
  • numpy
  • skimage
  • imageio
  • matplotlib
  • tqdm

Quick start

Place the SR datasets to the path of 'dir_data' as defined in the option.py file.
Run the following command to quick start our project

    cd src       
    sh demo.sh

The HNAS work can be splitted into four procedures:

  1. At search stage, we train the hierarchical controllers for architecture search.

    CUDA_VISIBLE_DEVICES=0 python search.py --model ENAS --scale 2 --patch_size 96 --save search_model --reset --data_test Set5 --layers 12 --init_channels 8 --entropy_coeff 1 --lr 0.001 --epoch 400 --flops_scale 0.2
  2. At infer stage, we infer some promising architectures.(optional)

    CUDA_VISIBLE_DEVICES=0 python derive.py --data_test Set5 --scale 2 --pre_train  ../experiment/search_model/model/model_best.pt  --test_only --self_ensemble --save_results --save result/ --train_controller False --model ENAS --layer 12 --init_channels 8 --seed 1  
  3. At re-train stage, we re-train the seached architecture from scratch.

    CUDA_VISIBLE_DEVICES=0 python main.py --model arch --genotype HNAS_A --scale 2 --patch_size 96 --save retrain_result --reset --data_test Set5 --data_range 1-800/801-810 --layers 12 --init_channels 64 --lr 1e-3 --epoch 300 --upsampling_Pos 9 --n_GPUs 1
  4. At test stage, we test our final model on five public standard datasets.

    CUDA_VISIBLE_DEVICES=0 python main.py --data_test Set5+Set14+B100+Urban100+Manga109 --data_range 801-900 --scale 2 --pre_train  ../experiment/retrain_result/model/model_best.pt  --test_only --self_ensemble --save_results --save result_arch/ --train_controller False --model arch --genotype HNAS_A --layer 12 --init_channels 64 --upsampling_Pos 9

Citation

If you use any part of this code in your research, please cite our paper:

@article{guo2020hierarchical,
  title={HNAS: Hierarchical Neural Architecture Search for Single Image Super-Resolution},
  author={Guo, Yong and Luo, Yongsheng and He, Zhenhao and Huang, Jin and Chen, Jian},
  journal={arXiv preprint arXiv:2003.04619},
  year={2020}
}

About

HNAS: Hierarchical Neural Architecture Search for Single Image Super-Resolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%