Skip to content

Commit

Permalink
LiveIntervalAnalysis: Compute subregister ranges.
Browse files Browse the repository at this point in the history
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223878 91177308-0d34-0410-b5e6-96231b3b80d8
  • Loading branch information
MatzeB committed Dec 10, 2014
1 parent 01ddf04 commit c66fa84
Show file tree
Hide file tree
Showing 2 changed files with 258 additions and 100 deletions.
248 changes: 188 additions & 60 deletions lib/CodeGen/LiveRangeCalc.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,37 +29,114 @@ void LiveRangeCalc::reset(const MachineFunction *mf,
DomTree = MDT;
Alloc = VNIA;

unsigned N = MF->getNumBlockIDs();
Seen.clear();
Seen.resize(N);
LiveOut.resize(N);
MainLiveOutData.reset(MF->getNumBlockIDs());
LiveIn.clear();
}


static SlotIndex getDefIndex(const SlotIndexes &Indexes, const MachineInstr &MI,
bool EarlyClobber) {
// PHI defs begin at the basic block start index.
if (MI.isPHI())
return Indexes.getMBBStartIdx(MI.getParent());

// Instructions are either normal 'r', or early clobber 'e'.
return Indexes.getInstructionIndex(&MI).getRegSlot(EarlyClobber);
}

void LiveRangeCalc::createDeadDefs(LiveInterval &LI) {
assert(MRI && Indexes && "call reset() first");

// Visit all def operands. If the same instruction has multiple defs of Reg,
// LR.createDeadDef() will deduplicate.
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
unsigned Reg = LI.reg;
for (const MachineOperand &MO : MRI->def_operands(Reg)) {
const MachineInstr *MI = MO.getParent();
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
unsigned SubReg = MO.getSubReg();
if (SubReg != 0 || LI.hasSubRanges()) {
unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
: MRI->getMaxLaneMaskForVReg(Reg);

// If this is the first time we see a subregister def, initialize
// subranges by creating a copy of the main range.
if (!LI.hasSubRanges() && !LI.empty()) {
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
}

for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S) {
// A Mask for subregs common to the existing subrange and current def.
unsigned Common = S->LaneMask & Mask;
if (Common == 0)
continue;
// A Mask for subregs covered by the subrange but not the current def.
unsigned LRest = S->LaneMask & ~Mask;
LiveInterval::SubRange *CommonRange;
if (LRest != 0) {
// Split current subrange into Common and LRest ranges.
S->LaneMask = LRest;
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
} else {
assert(Common == S->LaneMask);
CommonRange = &*S;
}
CommonRange->createDeadDef(Idx, *Alloc);
Mask &= ~Common;
}
if (Mask != 0) {
LiveInterval::SubRange *SubRange = LI.createSubRange(*Alloc, Mask);
SubRange->createDeadDef(Idx, *Alloc);
}
}

// Create the def in LR. This may find an existing def.
LI.createDeadDef(Idx, *Alloc);
}
}


void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");

// Visit all def operands. If the same instruction has multiple defs of Reg,
// LR.createDeadDef() will deduplicate.
for (MachineOperand &MO : MRI->def_operands(Reg)) {
const MachineInstr *MI = MO.getParent();
// Find the corresponding slot index.
SlotIndex Idx;
if (MI->isPHI())
// PHI defs begin at the basic block start index.
Idx = Indexes->getMBBStartIdx(MI->getParent());
else
// Instructions are either normal 'r', or early clobber 'e'.
Idx = Indexes->getInstructionIndex(MI)
.getRegSlot(MO.isEarlyClobber());

SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
// Create the def in LR. This may find an existing def.
LR.createDeadDef(Idx, *Alloc);
}
}


static SlotIndex getUseIndex(const SlotIndexes &Indexes,
const MachineOperand &MO) {
const MachineInstr *MI = MO.getParent();
unsigned OpNo = (&MO - &MI->getOperand(0));
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
// The actual place where a phi operand is used is the end of the pred MBB.
// PHI operands are paired: (Reg, PredMBB).
return Indexes.getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
}

// Check for early-clobber redefs.
bool isEarlyClobber = false;
unsigned DefIdx;
if (MO.isDef()) {
isEarlyClobber = MO.isEarlyClobber();
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
}
return Indexes.getInstructionIndex(MI).getRegSlot(isEarlyClobber);
}


void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");

Expand All @@ -73,38 +150,86 @@ void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
continue;
// MI is reading Reg. We may have visited MI before if it happens to be
// reading Reg multiple times. That is OK, extend() is idempotent.
const MachineInstr *MI = MO.getParent();
unsigned OpNo = (&MO - &MI->getOperand(0));

// Find the SlotIndex being read.
SlotIndex Idx;
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
// PHI operands are paired: (Reg, PredMBB).
// Extend the live range to be live-out from PredMBB.
Idx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
} else {
// This is a normal instruction.
Idx = Indexes->getInstructionIndex(MI).getRegSlot();
// Check for early-clobber redefs.
unsigned DefIdx;
if (MO.isDef()) {
if (MO.isEarlyClobber())
Idx = Idx.getRegSlot(true);
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
if (MI->getOperand(DefIdx).isEarlyClobber())
Idx = Idx.getRegSlot(true);
SlotIndex Idx = getUseIndex(*Indexes, MO);
extend(LR, Idx, Reg, MainLiveOutData);
}
}


void LiveRangeCalc::extendToUses(LiveInterval &LI) {
assert(MRI && Indexes && "call reset() first");

const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
SmallVector<LiveOutData,2> LiveOuts;
unsigned NumSubRanges = 0;
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S, ++NumSubRanges) {
LiveOuts.push_back(LiveOutData());
LiveOuts.back().reset(MF->getNumBlockIDs());
}

// Visit all operands that read Reg. This may include partial defs.
unsigned Reg = LI.reg;
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
if (!MO.readsReg())
continue;
SlotIndex Idx = getUseIndex(*Indexes, MO);
unsigned SubReg = MO.getSubReg();
if (MO.isUse() && (LI.hasSubRanges() || SubReg != 0)) {
unsigned Mask = SubReg != 0
? TRI.getSubRegIndexLaneMask(SubReg)
: Mask = MRI->getMaxLaneMaskForVReg(Reg);

// If this is the first time we see a subregister def/use. Initialize
// subranges by creating a copy of the main range.
if (!LI.hasSubRanges()) {
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
LiveOuts.front().reset(MF->getNumBlockIDs());
++NumSubRanges;
}
unsigned SubRangeIdx = 0;
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
SE = LI.subrange_end(); S != SE; ++S, ++SubRangeIdx) {
// A Mask for subregs common to the existing subrange and current def.
unsigned Common = S->LaneMask & Mask;
if (Common == 0)
continue;
// A Mask for subregs covered by the subrange but not the current def.
unsigned LRest = S->LaneMask & ~Mask;
LiveInterval::SubRange *CommonRange;
unsigned CommonRangeIdx;
if (LRest != 0) {
// Split current subrange into Common and LRest ranges.
S->LaneMask = LRest;
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
CommonRangeIdx = 0;
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
LiveOuts.front().reset(MF->getNumBlockIDs());
++NumSubRanges;
++SubRangeIdx;
} else {
// The subrange and current def lanemasks match completely.
assert(Common == S->LaneMask);
CommonRange = &*S;
CommonRangeIdx = SubRangeIdx;
}
extend(*CommonRange, Idx, Reg, LiveOuts[CommonRangeIdx]);
Mask &= ~Common;
}
assert(SubRangeIdx == NumSubRanges);
}
extend(LR, Idx, Reg);
extend(LI, Idx, Reg, MainLiveOutData);
}
}


// Transfer information from the LiveIn vector to the live ranges.
void LiveRangeCalc::updateLiveIns() {
void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
LiveRangeUpdater Updater;
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
Expand All @@ -121,8 +246,8 @@ void LiveRangeCalc::updateLiveIns() {
else {
// The value is live-through, update LiveOut as well.
// Defer the Domtree lookup until it is needed.
assert(Seen.test(MBB->getNumber()));
LiveOut[MBB] = LiveOutPair(I->Value, (MachineDomTreeNode *)nullptr);
assert(LiveOuts.Seen.test(MBB->getNumber()));
LiveOuts.Map[MBB] = LiveOutPair(I->Value, nullptr);
}
Updater.setDest(&I->LR);
Updater.add(Start, End, I->Value);
Expand All @@ -131,7 +256,8 @@ void LiveRangeCalc::updateLiveIns() {
}


void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts) {
assert(Kill.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
Expand All @@ -147,27 +273,28 @@ void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg))
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg, LiveOuts))
return;

// When there were multiple different values, we may need new PHIs.
calculateValues();
calculateValues(LiveOuts);
}


// This function is called by a client after using the low-level API to add
// live-out and live-in blocks. The unique value optimization is not
// available, SplitEditor::transferValues handles that case directly anyway.
void LiveRangeCalc::calculateValues() {
void LiveRangeCalc::calculateValues(LiveOutData &LiveOuts) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
updateSSA();
updateLiveIns();
updateSSA(LiveOuts);
updateFromLiveIns(LiveOuts);
}


bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
SlotIndex Kill, unsigned PhysReg) {
SlotIndex Kill, unsigned PhysReg,
LiveOutData &LiveOuts) {
unsigned KillMBBNum = KillMBB.getNumber();

// Block numbers where LR should be live-in.
Expand Down Expand Up @@ -201,8 +328,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
MachineBasicBlock *Pred = *PI;

// Is this a known live-out block?
if (Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = LiveOut[Pred].first) {
if (LiveOuts.Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = LiveOuts.Map[Pred].first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
Expand All @@ -216,7 +343,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
VNInfo *VNI = LR.extendInBlock(Start, End);
setLiveOutValue(Pred, VNI);
LiveOuts.setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
Expand Down Expand Up @@ -251,7 +378,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
if (*I == KillMBBNum && Kill.isValid())
End = Kill;
else
LiveOut[MF->getBlockNumbered(*I)] =
LiveOuts.Map[MF->getBlockNumbered(*I)] =
LiveOutPair(TheVNI, nullptr);
Updater.add(Start, End, TheVNI);
}
Expand All @@ -275,7 +402,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,

// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA() {
void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");

Expand All @@ -297,22 +424,23 @@ void LiveRangeCalc::updateSSA() {

// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
bool needPHI = !IDom
|| !LiveOuts.Seen.test(IDom->getBlock()->getNumber());

// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = LiveOut[IDom->getBlock()];
IDomValue = LiveOuts.Map[IDom->getBlock()];

// Cache the DomTree node that defined the value.
if (IDomValue.first && !IDomValue.second)
LiveOut[IDom->getBlock()].second = IDomValue.second =
LiveOuts.Map[IDom->getBlock()].second = IDomValue.second =
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));

for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair &Value = LiveOut[*PI];
LiveOutPair &Value = LiveOuts.Map[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;

Expand All @@ -334,7 +462,7 @@ void LiveRangeCalc::updateSSA() {
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOut indicates a foreign or missing value.
LiveOutPair &LOP = LiveOut[MBB];
LiveOutPair &LOP = LiveOuts.Map[MBB];

// Create a phi-def if required.
if (needPHI) {
Expand All @@ -348,7 +476,7 @@ void LiveRangeCalc::updateSSA() {
// This block is done, we know the final value.
I->DomNode = nullptr;

// Add liveness since updateLiveIns now skips this node.
// Add liveness since updateFromLiveIns now skips this node.
if (I->Kill.isValid())
LR.addSegment(LiveInterval::Segment(Start, I->Kill, VNI));
else {
Expand Down
Loading

0 comments on commit c66fa84

Please sign in to comment.