Skip to content

Commit

Permalink
Essential files
Browse files Browse the repository at this point in the history
  • Loading branch information
tychovdo committed Jun 13, 2016
1 parent c3d0e00 commit 5640f29
Show file tree
Hide file tree
Showing 27 changed files with 4,864 additions and 0 deletions.
54 changes: 54 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Vim
*.swp
*.swo

# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# IPython Notebook
.ipynb_checkpoints

# pyenv
.python-version

# dotenv
.env

# virtualenv
venv/
ENV/
75 changes: 75 additions & 0 deletions DQN.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import numpy as np
import tensorflow as tf

class DQN:
def __init__(self, params):
self.params = params
self.network_name = 'qnet'
self.sess = tf.Session()
self.x = tf.placeholder('float', [None, params['width'],params['height'], 6],name=self.network_name + '_x')
self.q_t = tf.placeholder('float', [None], name=self.network_name + '_q_t')
self.actions = tf.placeholder("float", [None, 4], name=self.network_name + '_actions')
self.rewards = tf.placeholder("float", [None], name=self.network_name + '_rewards')
self.terminals = tf.placeholder("float", [None], name=self.network_name + '_terminals')

# Layer 1 (Convolutional)
layer_name = 'conv1' ; size = 3 ; channels = 6 ; filters = 16 ; stride = 1
self.w1 = tf.Variable(tf.random_normal([size,size,channels,filters], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights')
self.b1 = tf.Variable(tf.constant(0.1, shape=[filters]),name=self.network_name + '_'+layer_name+'_biases')
self.c1 = tf.nn.conv2d(self.x, self.w1, strides=[1, stride, stride, 1], padding='SAME',name=self.network_name + '_'+layer_name+'_convs')
self.o1 = tf.nn.relu(tf.add(self.c1,self.b1),name=self.network_name + '_'+layer_name+'_activations')

# Layer 2 (Convolutional)
layer_name = 'conv2' ; size = 3 ; channels = 16 ; filters = 32 ; stride = 1
self.w2 = tf.Variable(tf.random_normal([size,size,channels,filters], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights')
self.b2 = tf.Variable(tf.constant(0.1, shape=[filters]),name=self.network_name + '_'+layer_name+'_biases')
self.c2 = tf.nn.conv2d(self.o1, self.w2, strides=[1, stride, stride, 1], padding='SAME',name=self.network_name + '_'+layer_name+'_convs')
self.o2 = tf.nn.relu(tf.add(self.c2,self.b2),name=self.network_name + '_'+layer_name+'_activations')

o2_shape = self.o2.get_shape().as_list()

# Layer 3 (Fully connected)
layer_name = 'fc3' ; hiddens = 256 ; dim = o2_shape[1]*o2_shape[2]*o2_shape[3]
self.o2_flat = tf.reshape(self.o2, [-1,dim],name=self.network_name + '_'+layer_name+'_input_flat')
self.w3 = tf.Variable(tf.random_normal([dim,hiddens], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights')
self.b3 = tf.Variable(tf.constant(0.1, shape=[hiddens]),name=self.network_name + '_'+layer_name+'_biases')
self.ip3 = tf.add(tf.matmul(self.o2_flat,self.w3),self.b3,name=self.network_name + '_'+layer_name+'_ips')
self.o3 = tf.nn.relu(self.ip3,name=self.network_name + '_'+layer_name+'_activations')

# Layer 4
layer_name = 'fc4' ; hiddens = 4 ; dim = 256
self.w4 = tf.Variable(tf.random_normal([dim,hiddens], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights')
self.b4 = tf.Variable(tf.constant(0.1, shape=[hiddens]),name=self.network_name + '_'+layer_name+'_biases')
self.y = tf.add(tf.matmul(self.o3,self.w4),self.b4,name=self.network_name + '_'+layer_name+'_outputs')

#Q,Cost,Optimizer
self.discount = tf.constant(self.params['discount'])
self.yj = tf.add(self.rewards, tf.mul(1.0-self.terminals, tf.mul(self.discount, self.q_t)))
self.Q_pred = tf.reduce_sum(tf.mul(self.y,self.actions), reduction_indices=1)
self.cost = tf.reduce_sum(tf.pow(tf.sub(self.yj, self.Q_pred), 2))

if self.params['load_file'] is not None:
self.global_step = tf.Variable(int(self.params['load_file'].split('_')[-1]),name='global_step', trainable=False)
else:
self.global_step = tf.Variable(0, name='global_step', trainable=False)

self.rmsprop = tf.train.RMSPropOptimizer(self.params['lr'],self.params['rms_decay'],0.0,self.params['rms_eps']).minimize(self.cost,global_step=self.global_step)
self.saver = tf.train.Saver(max_to_keep=0)

self.sess.run(tf.initialize_all_variables())

if self.params['load_file'] is not None:
print('Loading checkpoint...')
self.saver.restore(self.sess,self.params['load_file'])


def train(self,bat_s,bat_a,bat_t,bat_n,bat_r):
feed_dict={self.x: bat_n, self.q_t: np.zeros(bat_n.shape[0]), self.actions: bat_a, self.terminals:bat_t, self.rewards: bat_r}
q_t = self.sess.run(self.y,feed_dict=feed_dict)
q_t = np.amax(q_t, axis=1)
feed_dict={self.x: bat_s, self.q_t: q_t, self.actions: bat_a, self.terminals:bat_t, self.rewards: bat_r}
_,cnt,cost = self.sess.run([self.rmsprop,self.global_step,self.cost],feed_dict=feed_dict)
return cnt, cost

def save_ckpt(self,filename):
self.saver.save(self.sess, filename)
Loading

0 comments on commit 5640f29

Please sign in to comment.