forked from tychovdo/PacmanDQN
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
27 changed files
with
4,864 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Vim | ||
*.swp | ||
*.swo | ||
|
||
# Distribution / packaging | ||
.Python | ||
env/ | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# IPython Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# dotenv | ||
.env | ||
|
||
# virtualenv | ||
venv/ | ||
ENV/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
class DQN: | ||
def __init__(self, params): | ||
self.params = params | ||
self.network_name = 'qnet' | ||
self.sess = tf.Session() | ||
self.x = tf.placeholder('float', [None, params['width'],params['height'], 6],name=self.network_name + '_x') | ||
self.q_t = tf.placeholder('float', [None], name=self.network_name + '_q_t') | ||
self.actions = tf.placeholder("float", [None, 4], name=self.network_name + '_actions') | ||
self.rewards = tf.placeholder("float", [None], name=self.network_name + '_rewards') | ||
self.terminals = tf.placeholder("float", [None], name=self.network_name + '_terminals') | ||
|
||
# Layer 1 (Convolutional) | ||
layer_name = 'conv1' ; size = 3 ; channels = 6 ; filters = 16 ; stride = 1 | ||
self.w1 = tf.Variable(tf.random_normal([size,size,channels,filters], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights') | ||
self.b1 = tf.Variable(tf.constant(0.1, shape=[filters]),name=self.network_name + '_'+layer_name+'_biases') | ||
self.c1 = tf.nn.conv2d(self.x, self.w1, strides=[1, stride, stride, 1], padding='SAME',name=self.network_name + '_'+layer_name+'_convs') | ||
self.o1 = tf.nn.relu(tf.add(self.c1,self.b1),name=self.network_name + '_'+layer_name+'_activations') | ||
|
||
# Layer 2 (Convolutional) | ||
layer_name = 'conv2' ; size = 3 ; channels = 16 ; filters = 32 ; stride = 1 | ||
self.w2 = tf.Variable(tf.random_normal([size,size,channels,filters], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights') | ||
self.b2 = tf.Variable(tf.constant(0.1, shape=[filters]),name=self.network_name + '_'+layer_name+'_biases') | ||
self.c2 = tf.nn.conv2d(self.o1, self.w2, strides=[1, stride, stride, 1], padding='SAME',name=self.network_name + '_'+layer_name+'_convs') | ||
self.o2 = tf.nn.relu(tf.add(self.c2,self.b2),name=self.network_name + '_'+layer_name+'_activations') | ||
|
||
o2_shape = self.o2.get_shape().as_list() | ||
|
||
# Layer 3 (Fully connected) | ||
layer_name = 'fc3' ; hiddens = 256 ; dim = o2_shape[1]*o2_shape[2]*o2_shape[3] | ||
self.o2_flat = tf.reshape(self.o2, [-1,dim],name=self.network_name + '_'+layer_name+'_input_flat') | ||
self.w3 = tf.Variable(tf.random_normal([dim,hiddens], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights') | ||
self.b3 = tf.Variable(tf.constant(0.1, shape=[hiddens]),name=self.network_name + '_'+layer_name+'_biases') | ||
self.ip3 = tf.add(tf.matmul(self.o2_flat,self.w3),self.b3,name=self.network_name + '_'+layer_name+'_ips') | ||
self.o3 = tf.nn.relu(self.ip3,name=self.network_name + '_'+layer_name+'_activations') | ||
|
||
# Layer 4 | ||
layer_name = 'fc4' ; hiddens = 4 ; dim = 256 | ||
self.w4 = tf.Variable(tf.random_normal([dim,hiddens], stddev=0.01),name=self.network_name + '_'+layer_name+'_weights') | ||
self.b4 = tf.Variable(tf.constant(0.1, shape=[hiddens]),name=self.network_name + '_'+layer_name+'_biases') | ||
self.y = tf.add(tf.matmul(self.o3,self.w4),self.b4,name=self.network_name + '_'+layer_name+'_outputs') | ||
|
||
#Q,Cost,Optimizer | ||
self.discount = tf.constant(self.params['discount']) | ||
self.yj = tf.add(self.rewards, tf.mul(1.0-self.terminals, tf.mul(self.discount, self.q_t))) | ||
self.Q_pred = tf.reduce_sum(tf.mul(self.y,self.actions), reduction_indices=1) | ||
self.cost = tf.reduce_sum(tf.pow(tf.sub(self.yj, self.Q_pred), 2)) | ||
|
||
if self.params['load_file'] is not None: | ||
self.global_step = tf.Variable(int(self.params['load_file'].split('_')[-1]),name='global_step', trainable=False) | ||
else: | ||
self.global_step = tf.Variable(0, name='global_step', trainable=False) | ||
|
||
self.rmsprop = tf.train.RMSPropOptimizer(self.params['lr'],self.params['rms_decay'],0.0,self.params['rms_eps']).minimize(self.cost,global_step=self.global_step) | ||
self.saver = tf.train.Saver(max_to_keep=0) | ||
|
||
self.sess.run(tf.initialize_all_variables()) | ||
|
||
if self.params['load_file'] is not None: | ||
print('Loading checkpoint...') | ||
self.saver.restore(self.sess,self.params['load_file']) | ||
|
||
|
||
def train(self,bat_s,bat_a,bat_t,bat_n,bat_r): | ||
feed_dict={self.x: bat_n, self.q_t: np.zeros(bat_n.shape[0]), self.actions: bat_a, self.terminals:bat_t, self.rewards: bat_r} | ||
q_t = self.sess.run(self.y,feed_dict=feed_dict) | ||
q_t = np.amax(q_t, axis=1) | ||
feed_dict={self.x: bat_s, self.q_t: q_t, self.actions: bat_a, self.terminals:bat_t, self.rewards: bat_r} | ||
_,cnt,cost = self.sess.run([self.rmsprop,self.global_step,self.cost],feed_dict=feed_dict) | ||
return cnt, cost | ||
|
||
def save_ckpt(self,filename): | ||
self.saver.save(self.sess, filename) |
Oops, something went wrong.