Skip to content
/ PDGN Public
forked from fpthink/PDGN

Progressive Point Cloud Deconvolution Generation Network (PDGN)

License

Notifications You must be signed in to change notification settings

haiantyz/PDGN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Progressive Point Cloud Deconvolution Generation Network

by Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang, details are in paper.

Usage

  1. requires:

    CUDA10 + Pytorch 1.2 + Python3
    
  2. build ops:

    cd PDGN
    cd lib/pointops && python setup.py install && cd ../../
    
  3. Dataset:

    download data: https://github.com/charlesq34/pointnet-autoencoder#download-data
    shapenetcore_partanno_segmentation_benchmark_v0
    
  4. Train:

    CUDA_VISIBLE_DEVICES=0,1 python main.py --data_root '/test/dataset/3d_datasets/shapenetcore_partanno_segmentation_benchmark_v0/' --network PDGN_v1 --model_dir PDGN_v1 --batch_size 20 --max_epoch 600 --snapshot 100 --dataset shapenet --choice Chair --phase train
    
  5. Test:

    CUDA_VISIBLE_DEVICES=0,1 python main.py --network PDGN_v1 --batch_size 20 --pretrain_model_G 600_Chair_G.pth --pretrain_model_D 600_Chair_D.pth --savename 600_PDGN_v1 --model_dir PDGN_v1 --phase test
    

Citation

If you find the code useful, please consider citing:

@inproceedings{hui2020pdgn,
  title={Progressive Point Cloud Deconvolution Generation Network},
  author={Hui, Le and Xu, Rui and Xie, Jin and Qian, Jianjun and Yang, Jian},
  booktitle={ECCV},
  year={2020}
}

Acknowledgement

Our Cuda code is from PointWeb

About

Progressive Point Cloud Deconvolution Generation Network (PDGN)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 72.7%
  • Cuda 14.5%
  • C++ 9.7%
  • Jupyter Notebook 3.1%