by Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang, details are in paper.
-
requires:
CUDA10 + Pytorch 1.2 + Python3
-
build ops:
cd PDGN cd lib/pointops && python setup.py install && cd ../../
-
Dataset:
download data: https://github.com/charlesq34/pointnet-autoencoder#download-data shapenetcore_partanno_segmentation_benchmark_v0
-
Train:
CUDA_VISIBLE_DEVICES=0,1 python main.py --data_root '/test/dataset/3d_datasets/shapenetcore_partanno_segmentation_benchmark_v0/' --network PDGN_v1 --model_dir PDGN_v1 --batch_size 20 --max_epoch 600 --snapshot 100 --dataset shapenet --choice Chair --phase train
-
Test:
CUDA_VISIBLE_DEVICES=0,1 python main.py --network PDGN_v1 --batch_size 20 --pretrain_model_G 600_Chair_G.pth --pretrain_model_D 600_Chair_D.pth --savename 600_PDGN_v1 --model_dir PDGN_v1 --phase test
If you find the code useful, please consider citing:
@inproceedings{hui2020pdgn,
title={Progressive Point Cloud Deconvolution Generation Network},
author={Hui, Le and Xu, Rui and Xie, Jin and Qian, Jianjun and Yang, Jian},
booktitle={ECCV},
year={2020}
}
Our Cuda code is from PointWeb