Skip to content

haiyundao/TLS2trees

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TLS point cloud semantic classification and individual tree segmentation

This repository describes methods to extract individual trees from TLS point clouds. This is done using a 3-step process

1. rxp-pipeline

This step preprocesses data captured with RIEGL VZ TLS data. Code and details can be found here.

2. FSCT lite

This is forked from @SKrisanski and is a lite version that only runs the semantic segmentation (ground, wood, leaf, cwd). Typical usage is:

python run.py -p <point_cloud> --tile-index <path_to_index> --buffer <buffer> --verbose

optional arguments:
  -h, --help            show this help message and exit
  --point-cloud POINT_CLOUD, -p POINT_CLOUD
                        path to point cloud
  --params PARAMS       path to pickled parameter file
  --odir ODIR           output directory
  --step STEP           which process to run to
  --redo REDO           which process to run to
  --tile-index TILE_INDEX
                        path to tile index in space delimited format "TILE X Y"
  --buffer BUFFER       included data from neighbouring tiles
  --batch_size BATCH_SIZE
                        If you get CUDA errors, try lowering this.
  --num_procs NUM_PROCS
                        Number of CPU cores you want to use. If you run out of RAM, lower this.
  --keep-npy            Keeps .npy files used for segmentation after inference is finished.
  --output_fmt OUTPUT_FMT
                        file type of output
  --verbose             print stuff

3. Instance segmentation to extract individual trees

Following classification an instance segmenation can be run to seperate individual trees using:

python points2trees.py -t 001.downsample.segmented.ply --tindex ../tile_index.dat -o ../tmp/ --n-tiles 5 --slice-thickness .5 --find-stems-height 2 --find-stems-thickness .5 --pandarallel --verbose --add-leaves --add-leaves-voxel-length .5 --graph-maximum-cumulative-gap 3 --save-diameter-class --ignore-missing-tiles

optional arguments:
  -h, --help            show this help message and exit
  --tile TILE, -t TILE  fsct directory
  --odir ODIR, -o ODIR  output directory
  --tindex TINDEX       path to tile index
  --n-tiles N_TILES     enlarges the number of tiles i.e. 3x3 or tiles or 5 x 5 tiles
  --overlap OVERLAP     buffer to crop adjacent tiles
  --slice-thickness SLICE_THICKNESS
                        slice thickness for constructing graph
  --find-stems-height FIND_STEMS_HEIGHT
                        height for identifying stems
  --find-stems-thickness FIND_STEMS_THICKNESS
                        thickness of slice used for identifying stems
  --find-stems-min-radius FIND_STEMS_MIN_RADIUS
                        minimum radius of found stems
  --find-stems-min-points FIND_STEMS_MIN_POINTS
                        minimum number of points for found stems
  --graph-edge-length GRAPH_EDGE_LENGTH
                        maximum distance used to connect points in graph
  --graph-maximum-cumulative-gap GRAPH_MAXIMUM_CUMULATIVE_GAP
                        maximum cumulative distance between a base and a cluster
  --min-points-per-tree MIN_POINTS_PER_TREE
                        minimum number of points for a identified tree
  --add-leaves          add leaf points
  --add-leaves-voxel-length ADD_LEAVES_VOXEL_LENGTH
                        voxel sixe when add leaves
  --add-leaves-edge-length ADD_LEAVES_EDGE_LENGTH
                        maximum distance used to connect points in leaf graph
  --save-diameter-class
                        save into dimeter class directories
  --ignore-missing-tiles
                        ignore missing neighbouring tiles
  --pandarallel         use pandarallel
  --verbose             print something

Docker

To build a Docker container with all the libraries installed use:

docker build -t tls2trees:latest .

Then to run FSCT and the instance segmentation use:

docker run -it -v /path/to/data/outsidecontainer:/path/to/data/incontainer fsct:latest run.py
docker run -it -v /path/to/data/outsidecontainer:/path/to/data/incontainer fsct:latest points2trees.py

For HPC systems, where you don't have permission to run Docker, you can build the container on your local machine and convert to a singularity file using:

sudo singularity build tls2trees_latest.sif docker-daemon://tls2trees:latest

Copy this to the HPC system and run this using

singularity exec tls2trees_latest.sif run.py
singularity exec tls2trees_latest.sif points2trees.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.9%
  • Dockerfile 1.1%