forked from yu4u/age-gender-estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
yusuke-a-uchida
committed
Aug 5, 2018
1 parent
918c05f
commit 0b7834e
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import argparse | ||
import better_exceptions | ||
from pathlib import Path | ||
import numpy as np | ||
import pandas as pd | ||
import cv2 | ||
from keras.utils import Sequence | ||
|
||
|
||
class FaceGenerator(Sequence): | ||
def __init__(self, appa_dir, utk_dir=None, batch_size=32, image_size=224): | ||
self.image_path_and_age = [] | ||
self._load_appa(appa_dir) | ||
|
||
if utk_dir: | ||
self._load_utk(utk_dir) | ||
|
||
self.image_num = len(self.image_path_and_age) | ||
self.batch_size = batch_size | ||
self.image_size = image_size | ||
self.indices = np.random.permutation(self.image_num) | ||
|
||
def __len__(self): | ||
return self.image_num // self.batch_size | ||
|
||
def __getitem__(self, idx): | ||
batch_size = self.batch_size | ||
image_size = self.image_size | ||
x = np.zeros((batch_size, image_size, image_size, 3), dtype=np.uint8) | ||
y = np.zeros((batch_size, 1), dtype=np.int32) | ||
|
||
sample_indices = self.indices[idx * batch_size:(idx + 1) * batch_size] | ||
|
||
for i, sample_id in sample_indices: | ||
image_path, age = self.image_path_and_age[sample_id] | ||
image = cv2.imread(str(image_path)) | ||
x[i] = cv2.resize(image, (image_size, image_size)) | ||
y[i] = age | ||
|
||
return x, y | ||
|
||
def on_epoch_end(self): | ||
self.indices = np.random.permutation(self.image_num) | ||
|
||
def _load_appa(self, appa_dir): | ||
appa_root = Path(appa_dir) | ||
train_image_dir = appa_root.joinpath("train") | ||
gt_train_path = appa_root.joinpath("gt_avg_train.csv") | ||
df = pd.read_csv(str(gt_train_path)) | ||
|
||
for i, row in df.iterrows(): | ||
age = int(row.apparent_age_avg) | ||
# age = int(row.real_age) | ||
image_path = train_image_dir.joinpath(row.file_name + "_face.jpg") | ||
|
||
if image_path.is_file(): | ||
self.image_path_and_age.append([str(image_path), age]) | ||
|
||
def _load_utk(self, utk_dir): | ||
image_dir = Path(utk_dir) | ||
|
||
for image_path in image_dir.glob("*.jpg"): | ||
image_name = image_path.name # [age]_[gender]_[race]_[date&time].jpg | ||
age = int(image_name.split("_")[0]) | ||
|
||
if image_path.is_file(): | ||
self.image_path_and_age.append([str(image_path), age]) | ||
|
||
|
||
class ValGenerator(Sequence): | ||
def __init__(self, appa_dir, batch_size=32, image_size=224): | ||
self.image_path_and_age = [] | ||
self._load_appa(appa_dir) | ||
self.image_num = len(self.image_path_and_age) | ||
self.batch_size = batch_size | ||
self.image_size = image_size | ||
|
||
def __len__(self): | ||
return self.image_num // self.batch_size | ||
|
||
def __getitem__(self, idx): | ||
batch_size = self.batch_size | ||
image_size = self.image_size | ||
x = np.zeros((batch_size, image_size, image_size, 3), dtype=np.uint8) | ||
y = np.zeros((batch_size, 1), dtype=np.int32) | ||
|
||
for i in range(batch_size): | ||
image_path, age = self.image_path_and_age[idx * batch_size + i] | ||
image = cv2.imread(str(image_path)) | ||
x[i] = cv2.resize(image, (image_size, image_size)) | ||
y[i] = age | ||
|
||
return x, y | ||
|
||
def _load_appa(self, appa_dir): | ||
appa_root = Path(appa_dir) | ||
val_image_dir = appa_root.joinpath("valid") | ||
gt_val_path = appa_root.joinpath("gt_avg_valid.csv") | ||
df = pd.read_csv(str(gt_val_path)) | ||
|
||
for i, row in df.iterrows(): | ||
age = int(row.apparent_age_avg) | ||
# age = int(row.real_age) | ||
image_path = val_image_dir.joinpath(row.file_name + "_face.jpg") | ||
|
||
if image_path.is_file(): | ||
self.image_path_and_age.append([str(image_path), age]) |