forked from PaddlePaddle/PaddleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
10 changed files
with
1,205 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
total_iters: 60000 | ||
output_dir: output_dir | ||
# tensor range for function tensor2img | ||
min_max: | ||
(0., 1.) | ||
|
||
model: | ||
name: ESRGAN | ||
generator: | ||
name: RRDBNet | ||
in_nc: 3 | ||
out_nc: 3 | ||
nf: 64 | ||
nb: 23 | ||
discriminator: | ||
name: VGGDiscriminator128 | ||
in_channels: 3 | ||
num_feat: 64 | ||
pixel_criterion: | ||
name: L1Loss | ||
loss_weight: !!float 1e-2 | ||
perceptual_criterion: | ||
name: PerceptualLoss | ||
layer_weights: | ||
'34': 1.0 | ||
perceptual_weight: 1.0 | ||
style_weight: 0.0 | ||
norm_img: False | ||
gan_criterion: | ||
name: GANLoss | ||
gan_mode: vanilla | ||
loss_weight: !!float 5e-3 | ||
|
||
dataset: | ||
train: | ||
name: SRDataset | ||
gt_folder: data/realsr_preprocess/DF2K/generated/tdsr/HR_sub/ | ||
lq_folder: data/realsr_preprocess/DF2K/generated/tdsr/LR_sub/ | ||
num_workers: 4 | ||
batch_size: 16 | ||
scale: 4 | ||
preprocess: | ||
- name: LoadImageFromFile | ||
key: lq | ||
- name: LoadImageFromFile | ||
key: gt | ||
- name: Transforms | ||
input_keys: [lq, gt] | ||
pipeline: | ||
- name: SRPairedRandomCrop | ||
gt_patch_size: 128 | ||
scale: 4 | ||
keys: [image, image] | ||
- name: PairedRandomHorizontalFlip | ||
keys: [image, image] | ||
- name: PairedRandomVerticalFlip | ||
keys: [image, image] | ||
- name: PairedRandomTransposeHW | ||
keys: [image, image] | ||
- name: Transpose | ||
keys: [image, image] | ||
- name: Normalize | ||
mean: [0., .0, 0.] | ||
std: [255., 255., 255.] | ||
keys: [image, image] | ||
- name: SRNoise | ||
noise_path: data/realsr_preprocess/DF2K/Corrupted_noise/ | ||
size: 32 | ||
keys: [image] | ||
test: | ||
name: SRDataset | ||
gt_folder: data/DIV2K/val_set14/Set14 | ||
lq_folder: data/DIV2K/val_set14/Set14_bicLRx4 | ||
scale: 4 | ||
preprocess: | ||
- name: LoadImageFromFile | ||
key: lq | ||
- name: LoadImageFromFile | ||
key: gt | ||
- name: Transforms | ||
input_keys: [lq, gt] | ||
pipeline: | ||
- name: Transpose | ||
keys: [image, image] | ||
- name: Normalize | ||
mean: [0., .0, 0.] | ||
std: [255., 255., 255.] | ||
keys: [image, image] | ||
|
||
lr_scheduler: | ||
name: MultiStepDecay | ||
learning_rate: 0.0001 | ||
milestones: [5000, 10000, 20000, 30000] | ||
gamma: 0.5 | ||
|
||
optimizer: | ||
optimG: | ||
name: Adam | ||
net_names: | ||
- generator | ||
weight_decay: 0.0 | ||
beta1: 0.9 | ||
beta2: 0.999 | ||
optimD: | ||
name: Adam | ||
net_names: | ||
- discriminator | ||
weight_decay: 0.0 | ||
beta1: 0.9 | ||
beta2: 0.999 | ||
|
||
validate: | ||
interval: 5000 | ||
save_img: false | ||
|
||
metrics: | ||
psnr: # metric name, can be arbitrary | ||
name: PSNR | ||
crop_border: 4 | ||
test_y_channel: false | ||
ssim: | ||
name: SSIM | ||
crop_border: 4 | ||
test_y_channel: false | ||
|
||
log_config: | ||
interval: 100 | ||
visiual_interval: 500 | ||
|
||
snapshot_config: | ||
interval: 5000 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
total_iters: 60000 | ||
output_dir: output_dir | ||
# tensor range for function tensor2img | ||
min_max: | ||
(0., 1.) | ||
|
||
model: | ||
name: ESRGAN | ||
generator: | ||
name: RRDBNet | ||
in_nc: 3 | ||
out_nc: 3 | ||
nf: 64 | ||
nb: 23 | ||
discriminator: | ||
name: VGGDiscriminator128 | ||
in_channels: 3 | ||
num_feat: 64 | ||
pixel_criterion: | ||
name: L1Loss | ||
loss_weight: !!float 1e-2 | ||
perceptual_criterion: | ||
name: PerceptualLoss | ||
layer_weights: | ||
'34': 1.0 | ||
perceptual_weight: 1.0 | ||
style_weight: 0.0 | ||
norm_img: False | ||
gan_criterion: | ||
name: GANLoss | ||
gan_mode: vanilla | ||
loss_weight: !!float 5e-3 | ||
|
||
dataset: | ||
train: | ||
name: SRDataset | ||
gt_folder: data/realsr_preprocess/DPED/generated/clean/train_tdsr/HR/ | ||
lq_folder: data/realsr_preprocess/DPED/generated/clean/train_tdsr/LR/ | ||
num_workers: 4 | ||
batch_size: 16 | ||
scale: 4 | ||
preprocess: | ||
- name: LoadImageFromFile | ||
key: lq | ||
- name: LoadImageFromFile | ||
key: gt | ||
- name: Transforms | ||
input_keys: [lq, gt] | ||
pipeline: | ||
- name: SRPairedRandomCrop | ||
gt_patch_size: 128 | ||
scale: 4 | ||
keys: [image, image] | ||
- name: PairedRandomHorizontalFlip | ||
keys: [image, image] | ||
- name: PairedRandomVerticalFlip | ||
keys: [image, image] | ||
- name: PairedRandomTransposeHW | ||
keys: [image, image] | ||
- name: Transpose | ||
keys: [image, image] | ||
- name: Normalize | ||
mean: [0., .0, 0.] | ||
std: [255., 255., 255.] | ||
keys: [image, image] | ||
- name: SRNoise | ||
noise_path: data/realsr_preprocess/DPED/DPEDiphone_noise/ | ||
size: 32 | ||
keys: [image] | ||
test: | ||
name: SRDataset | ||
gt_folder: data/DIV2K/val_set14/Set14 | ||
lq_folder: data/DIV2K/val_set14/Set14_bicLRx4 | ||
scale: 4 | ||
preprocess: | ||
- name: LoadImageFromFile | ||
key: lq | ||
- name: LoadImageFromFile | ||
key: gt | ||
- name: Transforms | ||
input_keys: [lq, gt] | ||
pipeline: | ||
- name: Transpose | ||
keys: [image, image] | ||
- name: Normalize | ||
mean: [0., .0, 0.] | ||
std: [255., 255., 255.] | ||
keys: [image, image] | ||
|
||
lr_scheduler: | ||
name: MultiStepDecay | ||
learning_rate: 0.0001 | ||
milestones: [5000, 10000, 20000, 30000] | ||
gamma: 0.5 | ||
|
||
optimizer: | ||
optimG: | ||
name: Adam | ||
net_names: | ||
- generator | ||
weight_decay: 0.0 | ||
beta1: 0.9 | ||
beta2: 0.999 | ||
optimD: | ||
name: Adam | ||
net_names: | ||
- discriminator | ||
weight_decay: 0.0 | ||
beta1: 0.9 | ||
beta2: 0.999 | ||
|
||
validate: | ||
interval: 5000 | ||
save_img: false | ||
|
||
metrics: | ||
psnr: # metric name, can be arbitrary | ||
name: PSNR | ||
crop_border: 4 | ||
test_y_channel: false | ||
ssim: | ||
name: SSIM | ||
crop_border: 4 | ||
test_y_channel: false | ||
|
||
log_config: | ||
interval: 100 | ||
visiual_interval: 500 | ||
|
||
snapshot_config: | ||
interval: 5000 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
from PIL import Image | ||
import numpy as np | ||
import os.path as osp | ||
import glob | ||
import os | ||
import argparse | ||
import yaml | ||
|
||
parser = argparse.ArgumentParser(description='create a dataset') | ||
parser.add_argument('--dataset', | ||
default='df2k', | ||
type=str, | ||
help='selecting different datasets') | ||
parser.add_argument('--artifacts', | ||
default='', | ||
type=str, | ||
help='selecting different artifacts type') | ||
parser.add_argument('--cleanup_factor', | ||
default=2, | ||
type=int, | ||
help='downscaling factor for image cleanup') | ||
parser.add_argument('--upscale_factor', | ||
default=4, | ||
type=int, | ||
choices=[4], | ||
help='super resolution upscale factor') | ||
opt = parser.parse_args() | ||
|
||
# define input and target directories | ||
with open('./preprocess/paths.yml', 'r') as stream: | ||
PATHS = yaml.load(stream) | ||
|
||
|
||
def noise_patch(rgb_img, sp, max_var, min_mean): | ||
img = rgb_img.convert('L') | ||
rgb_img = np.array(rgb_img) | ||
img = np.array(img) | ||
|
||
w, h = img.shape | ||
collect_patchs = [] | ||
|
||
for i in range(0, w - sp, sp): | ||
for j in range(0, h - sp, sp): | ||
patch = img[i:i + sp, j:j + sp] | ||
var_global = np.var(patch) | ||
mean_global = np.mean(patch) | ||
if var_global < max_var and mean_global > min_mean: | ||
rgb_patch = rgb_img[i:i + sp, j:j + sp, :] | ||
collect_patchs.append(rgb_patch) | ||
|
||
return collect_patchs | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
if opt.dataset == 'df2k': | ||
img_dir = PATHS[opt.dataset][opt.artifacts]['source'] | ||
noise_dir = PATHS['datasets']['df2k'] + '/Corrupted_noise' | ||
sp = 256 | ||
max_var = 20 | ||
min_mean = 0 | ||
else: | ||
img_dir = PATHS[opt.dataset][opt.artifacts]['hr']['train'] | ||
noise_dir = PATHS['datasets']['dped'] + '/DPEDiphone_noise' | ||
sp = 256 | ||
max_var = 20 | ||
min_mean = 50 | ||
|
||
assert not os.path.exists(noise_dir) | ||
os.mkdir(noise_dir) | ||
|
||
img_paths = sorted(glob.glob(osp.join(img_dir, '*.png'))) | ||
cnt = 0 | ||
for path in img_paths: | ||
img_name = osp.splitext(osp.basename(path))[0] | ||
print('**********', img_name, '**********') | ||
img = Image.open(path).convert('RGB') | ||
patchs = noise_patch(img, sp, max_var, min_mean) | ||
for idx, patch in enumerate(patchs): | ||
save_path = osp.join(noise_dir, | ||
'{}_{:03}.png'.format(img_name, idx)) | ||
cnt += 1 | ||
print('collect:', cnt, save_path) | ||
Image.fromarray(patch).save(save_path) |
Oops, something went wrong.