forked from traveller59/second.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
2. fix traveller59#154 small problem of multi-gpu
- Loading branch information
1 parent
085b6d7
commit c2f9674
Showing
6 changed files
with
394 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,310 @@ | ||
model: { | ||
second: { | ||
voxel_generator { | ||
point_cloud_range : [-49.6, -49.6, -5, 49.6, 49.6, 3] | ||
voxel_size : [0.2, 0.2, 8] | ||
max_number_of_points_per_voxel : 40 | ||
} | ||
voxel_feature_extractor: { | ||
module_class_name: "PillarFeatureNet" | ||
num_filters: [64] | ||
with_distance: false | ||
num_input_features: 4 | ||
} | ||
middle_feature_extractor: { | ||
module_class_name: "PointPillarsScatter" | ||
downsample_factor: 1 | ||
num_input_features: 64 | ||
} | ||
rpn: { | ||
module_class_name: "RPNV2" | ||
layer_nums: [3, 5, 5] | ||
layer_strides: [2, 2, 2] | ||
num_filters: [64, 128, 256] | ||
upsample_strides: [1, 2, 4] | ||
num_upsample_filters: [128, 128, 128] | ||
use_groupnorm: false | ||
num_groups: 32 | ||
num_input_features: 64 | ||
} | ||
loss: { | ||
classification_loss: { | ||
weighted_sigmoid_focal: { | ||
alpha: 0.25 | ||
gamma: 2.0 | ||
anchorwise_output: true | ||
} | ||
} | ||
localization_loss: { | ||
weighted_smooth_l1: { | ||
sigma: 3.0 | ||
code_weight: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5] | ||
} | ||
} | ||
classification_weight: 1.0 | ||
localization_weight: 2.0 | ||
} | ||
num_point_features: 4 # model's num point feature should be independent of dataset | ||
# Outputs | ||
use_sigmoid_score: true | ||
encode_background_as_zeros: true | ||
encode_rad_error_by_sin: true | ||
|
||
use_direction_classifier: true | ||
direction_loss_weight: 0.2 | ||
|
||
# Loss | ||
pos_class_weight: 1.0 | ||
neg_class_weight: 1.0 | ||
|
||
loss_norm_type: NormByNumPositives | ||
# Postprocess | ||
post_center_limit_range: [-59.6, -59.6, -6, 59.6, 59.6, 4] | ||
use_rotate_nms: false | ||
use_multi_class_nms: false | ||
nms_pre_max_size: 1000 | ||
nms_post_max_size: 300 | ||
nms_score_threshold: 0.05 | ||
nms_iou_threshold: 0.5 | ||
|
||
box_coder: { | ||
ground_box3d_coder: { | ||
linear_dim: false | ||
encode_angle_vector: false | ||
} | ||
} | ||
target_assigner: { | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [1.95017717, 4.60718145, 1.72270761] # wlh | ||
anchor_ranges: [-49.6, -49.6, -0.93897414, 49.6, 49.6, -0.93897414] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.6 | ||
unmatched_threshold : 0.45 | ||
class_name: "car" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [0.60058911, 1.68452161, 1.27192197] # wlh | ||
anchor_ranges: [-49.6, -49.6, -1.03743013, 49.6, 49.6, -1.03743013] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.4 | ||
unmatched_threshold : 0.2 | ||
class_name: "bicycle" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
|
||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [2.94046906, 11.1885991, 3.47030982] # wlh | ||
anchor_ranges: [-49.6, -49.6, -0.0715754, 49.6, 49.6, -0.0715754] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.7 | ||
unmatched_threshold : 0.4 | ||
class_name: "bus" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
|
||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [2.73050468, 6.38352896, 3.13312415] # wlh | ||
anchor_ranges: [-49.6, -49.6, -0.08168083, 49.6, 49.6, -0.08168083] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.6 | ||
unmatched_threshold : 0.45 | ||
class_name: "construction_vehicle" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
|
||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [0.76279481, 2.09973778, 1.44403034] # wlh | ||
anchor_ranges: [-49.6, -49.6, -0.99194854, 49.6, 49.6, -0.99194854] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.4 | ||
unmatched_threshold : 0.2 | ||
class_name: "motorcycle" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
|
||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [0.66344886, 0.7256437, 1.75748069] # wlh | ||
anchor_ranges: [-49.6, -49.6, -0.73911038, 49.6, 49.6, -0.73911038] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.4 | ||
unmatched_threshold : 0.2 | ||
class_name: "pedestrian" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
|
||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [0.39694519, 0.40359262, 1.06232151] # wlh | ||
anchor_ranges: [-49.6, -49.6, -1.27868911, 49.6, 49.6, -1.27868911] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.3 | ||
unmatched_threshold : 0.15 | ||
class_name: "traffic_cone" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [2.87427237, 12.01320693, 3.81509561] # wlh | ||
anchor_ranges: [-49.6, -49.6, 0.22228277, 49.6, 49.6, 0.22228277] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.6 | ||
unmatched_threshold : 0.45 | ||
class_name: "trailer" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [2.4560939, 6.73778078, 2.73004906] # wlh | ||
anchor_ranges: [-49.6, -49.6, -0.37937912, 49.6, 49.6, -0.37937912] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.6 | ||
unmatched_threshold : 0.45 | ||
class_name: "truck" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
} | ||
anchor_generators: { | ||
anchor_generator_range: { | ||
sizes: [2.49008838, 0.48578221, 0.98297065] # wlh | ||
anchor_ranges: [-49.6, -49.6, -1.27247968, 49.6, 49.6, -1.27247968] | ||
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code. | ||
matched_threshold : 0.5 | ||
unmatched_threshold : 0.35 | ||
class_name: "barrier" | ||
custom_values: [0, 0] | ||
} | ||
region_similarity_calculator: { | ||
nearest_iou_similarity: { | ||
} | ||
} | ||
} | ||
sample_positive_fraction : -1 | ||
sample_size : 512 | ||
} | ||
} | ||
} | ||
|
||
train_input_reader: { | ||
dataset: { | ||
dataset_class_name: "NuScenesDatasetD8Velo" | ||
kitti_info_path: "/media/yy/960evo/datasets/nuscene/v1.0-trainval/infos_train.pkl" | ||
kitti_root_path: "/media/yy/960evo/datasets/nuscene/v1.0-trainval" | ||
} | ||
|
||
batch_size: 3 | ||
preprocess: { | ||
max_number_of_voxels: 30000 | ||
shuffle_points: false | ||
num_workers: 4 | ||
groundtruth_localization_noise_std: [0, 0, 0] | ||
groundtruth_rotation_uniform_noise: [0, 0] | ||
# groundtruth_localization_noise_std: [0.25, 0.25, 0.25] | ||
# groundtruth_rotation_uniform_noise: [-0.15707963267, 0.15707963267] | ||
# global_rotation_uniform_noise: [-0.78539816, 0.78539816] | ||
global_rotation_uniform_noise: [0, 0] | ||
global_scaling_uniform_noise: [0.95, 1.05] | ||
global_random_rotation_range_per_object: [0, 0] | ||
global_translate_noise_std: [0.2, 0.2, 0.2] | ||
anchor_area_threshold: -1 | ||
remove_points_after_sample: false | ||
groundtruth_points_drop_percentage: 0.0 | ||
groundtruth_drop_max_keep_points: 15 | ||
remove_unknown_examples: false | ||
remove_environment: false | ||
database_sampler { | ||
} | ||
} | ||
} | ||
|
||
train_config: { | ||
optimizer: { | ||
adam_optimizer: { | ||
learning_rate: { | ||
one_cycle: { | ||
lr_max: 3e-3 | ||
moms: [0.95, 0.85] | ||
div_factor: 10.0 | ||
pct_start: 0.4 | ||
} | ||
} | ||
weight_decay: 0.01 | ||
} | ||
fixed_weight_decay: true | ||
use_moving_average: false | ||
} | ||
steps: 58650 # 1173 * 50 (3517 // 3 + 1) | ||
steps_per_eval: 5865 # 1173 * 5 | ||
save_checkpoints_secs : 1800 # half hour | ||
save_summary_steps : 10 | ||
enable_mixed_precision: false | ||
loss_scale_factor: -1 | ||
clear_metrics_every_epoch: true | ||
} | ||
|
||
eval_input_reader: { | ||
dataset: { | ||
dataset_class_name: "NuScenesDataset" | ||
kitti_info_path: "/media/yy/960evo/datasets/nuscene/v1.0-trainval/infos_val.pkl" | ||
kitti_root_path: "/media/yy/960evo/datasets/nuscene/v1.0-trainval" | ||
} | ||
batch_size: 1 | ||
|
||
preprocess: { | ||
max_number_of_voxels: 40000 | ||
shuffle_points: false | ||
num_workers: 3 | ||
anchor_area_threshold: -1 | ||
remove_environment: false | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.