Skip to content

harry0217chua/rack_detect

Repository files navigation

Rack Detection Test

This file contains my scripts to work with YOLOv3 (neural network for object detection).

Setup

How to install Yolo System:

  1. Run these in the terminal accordingly:

git clone https://github.com/pjreddie/darknet cd darknet make

  1. Check whether the system is installed correctly by running these in the darknet directory:

wget https://pjreddie.com/media/files/yolov3.weights ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

Then you will see something like this:

layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BFLOPs 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BFLOPs ....... 105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs 106 detection truth_thresh: Using default '1.000000' Loading weights from yolov3.weights...Done! data/dog.jpg: Predicted in 0.029329 seconds. dog: 99% truck: 93% bicycle: 99%

How to use the Rack's front legs detection?

  1. Download the weight file and the .cfg file required for the leg detection in the Darknet directory:

cd darknet

git clone https://github.com/chua0876/rack_detect.git

  1. Download the rack's leg detection weight file and put it in the Darknet directory.

https://drive.google.com/file/d/1h2ReoNxj1MnUNSJ1MWMyjHQlt99GkVkl/view?usp=sharing

  1. Run this command in the terminal to test the weight file:

./darknet detector test rack_detect/obj.data rack_detect/yolov3-rack_tiny.cfg yolov3-rack_tiny_600.weights rack_detect/frame0201.jpg

  1. Then you will see the result of the detection like Result.png in the rack_detect folder!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published