Skip to content

Commit

Permalink
MRG, ENH: Export evokeds MFF (mne-tools#9406)
Browse files Browse the repository at this point in the history
* ENH: Add export evokeds to MFF function

* ENH: Add export evokeds function

* Add tests for export evokeds

* DOC: Add export_evokeds to python reference

* DOC: Fix history argument type

* STY: Use logger for user message

* FIX: Nest pytz import

* Clarify MFF specific arguments

* DOC: Use shared warning message

* FIX: Test digitization data from categories.xml

* STY: Use regex match for pytest.raises

* STY: Use zipped lists

* Refactor assert statements

* ENH: Store MFF device type in info

* Determine device type from info

* Use kwargs for format-specific exports

* Use current time for record time

Because averaged files are absolute time agnostic,
we can simplify by using plugging in the current time
for the record time. This is also the behavior when
running an averaging tool in EGI Net Station software.

* Add MFF export funtion to python reference

* ENH: Reorganize

* FIX: Missed a file

* ENH: For newer mffpy

Co-authored-by: Eric Larson <[email protected]>
  • Loading branch information
ephathaway and larsoner authored Jun 3, 2021
1 parent dbfaeac commit 8702d0e
Show file tree
Hide file tree
Showing 11 changed files with 323 additions and 19 deletions.
2 changes: 2 additions & 0 deletions doc/export.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,4 +14,6 @@ Exporting
:toctree: generated/

export_epochs
export_evokeds
export_evokeds_mff
export_raw
3 changes: 2 additions & 1 deletion mne/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,8 @@
events_from_annotations)
from .epochs import (BaseEpochs, Epochs, EpochsArray, read_epochs,
concatenate_epochs, make_fixed_length_epochs)
from .evoked import Evoked, EvokedArray, read_evokeds, write_evokeds, combine_evoked
from .evoked import (Evoked, EvokedArray, read_evokeds, write_evokeds,
combine_evoked)
from .label import (read_label, label_sign_flip,
write_label, stc_to_label, grow_labels, Label, split_label,
BiHemiLabel, read_labels_from_annot, write_labels_to_annot,
Expand Down
2 changes: 1 addition & 1 deletion mne/epochs.py
Original file line number Diff line number Diff line change
Expand Up @@ -1823,7 +1823,7 @@ def export(self, fname, fmt='auto', verbose=None):
"""Export Epochs to external formats.
Supported formats: EEGLAB (set, uses :mod:`eeglabio`)
%(export_warning)s
%(export_warning)s :meth:`save` instead.
Parameters
----------
Expand Down
3 changes: 2 additions & 1 deletion mne/export/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
from ._export import export_raw, export_epochs
from ._export import export_raw, export_epochs, export_evokeds
from ._egimff import export_evokeds_mff
150 changes: 150 additions & 0 deletions mne/export/_egimff.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
# -*- coding: utf-8 -*-
# Authors: MNE Developers
#
# License: BSD (3-clause)

import datetime

import numpy as np

from ..io.egi.egimff import _import_mffpy
from ..io.pick import pick_types, pick_channels
from ..utils import verbose


@verbose
def export_evokeds_mff(fname, evoked, history=None, *, verbose=None):
"""Export evoked dataset to MFF.
Parameters
----------
%(export_params_fname)s
evoked : list of Evoked instances
List of evoked datasets to export to one file. Note that the
measurement info from the first evoked instance is used, so be sure
that information matches.
history : None (default) | list of dict
Optional list of history entries (dictionaries) to be written to
history.xml. This must adhere to the format described in
mffpy.xml_files.History.content. If None, no history.xml will be
written.
%(verbose)s
Notes
-----
.. versionadded:: 0.24
Only EEG channels are written to the output file.
``info['device_info']['type']`` must be a valid MFF recording device
(e.g. 'HydroCel GSN 256 1.0'). This field is automatically populated when
using MFF read functions.
"""
mffpy = _import_mffpy('Export evokeds to MFF.')
import pytz
info = evoked[0].info
if np.round(info['sfreq']) != info['sfreq']:
raise ValueError('Sampling frequency must be a whole number. '
f'sfreq: {info["sfreq"]}')
sampling_rate = int(info['sfreq'])

# Initialize writer
writer = mffpy.Writer(fname)
current_time = pytz.utc.localize(datetime.datetime.utcnow())
writer.addxml('fileInfo', recordTime=current_time)
try:
device = info['device_info']['type']
except (TypeError, KeyError):
raise ValueError('No device type. Cannot determine sensor layout.')
writer.add_coordinates_and_sensor_layout(device)

# Add EEG data
eeg_channels = pick_types(info, eeg=True, exclude=[])
eeg_bin = mffpy.bin_writer.BinWriter(sampling_rate)
for ave in evoked:
# Signals are converted to µV
block = (ave.data[eeg_channels] * 1e6).astype(np.float32)
eeg_bin.add_block(block, offset_us=0)
writer.addbin(eeg_bin)

# Add categories
categories_content = _categories_content_from_evokeds(evoked)
writer.addxml('categories', categories=categories_content)

# Add history
if history:
writer.addxml('historyEntries', entries=history)

writer.write()


def _categories_content_from_evokeds(evoked):
"""Return categories.xml content for evoked dataset."""
content = dict()
begin_time = 0
for ave in evoked:
# Times are converted to microseconds
sfreq = ave.info['sfreq']
duration = np.round(len(ave.times) / sfreq * 1e6).astype(int)
end_time = begin_time + duration
event_time = begin_time - np.round(ave.tmin * 1e6).astype(int)
eeg_bads = _get_bad_eeg_channels(ave.info)
content[ave.comment] = [
_build_segment_content(begin_time, end_time, event_time, eeg_bads,
name='Average', nsegs=ave.nave)
]
begin_time += duration
return content


def _get_bad_eeg_channels(info):
"""Return a list of bad EEG channels formatted for categories.xml.
Given a list of only the EEG channels in file, return the indices of this
list (starting at 1) that correspond to bad channels.
"""
if len(info['bads']) == 0:
return []
eeg_channels = pick_types(info, eeg=True, exclude=[])
bad_channels = pick_channels(info['ch_names'], info['bads'])
bads_elementwise = np.isin(eeg_channels, bad_channels)
return list(np.flatnonzero(bads_elementwise) + 1)


def _build_segment_content(begin_time, end_time, event_time, eeg_bads,
status='unedited', name=None, pns_bads=None,
nsegs=None):
"""Build content for a single segment in categories.xml.
Segments are sorted into categories in categories.xml. In a segmented MFF
each category can contain multiple segments, but in an averaged MFF each
category only contains one segment (the average).
"""
channel_status = [{
'signalBin': 1,
'exclusion': 'badChannels',
'channels': eeg_bads
}]
if pns_bads:
channel_status.append({
'signalBin': 2,
'exclusion': 'badChannels',
'channels': pns_bads
})
content = {
'status': status,
'beginTime': begin_time,
'endTime': end_time,
'evtBegin': event_time,
'evtEnd': event_time,
'channelStatus': channel_status,
}
if name:
content['name'] = name
if nsegs:
content['keys'] = {
'#seg': {
'type': 'long',
'data': nsegs
}
}
return content
60 changes: 59 additions & 1 deletion mne/export/_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@

import os.path as op

from ..utils import verbose, _validate_type
from ._egimff import export_evokeds_mff
from ..utils import verbose, logger, _validate_type


@verbose
Expand Down Expand Up @@ -78,6 +79,63 @@ def export_epochs(fname, epochs, fmt='auto', verbose=None):
raise NotImplementedError('Export to BrainVision not implemented.')


@verbose
def export_evokeds(fname, evoked, fmt='auto', verbose=None):
"""Export evoked dataset to external formats.
This function is a wrapper for format-specific export functions. The export
function is selected based on the inferred file format. For additional
options, use the format-specific functions.
Supported formats
MFF (mff, uses :func:`mne.export.export_evokeds_mff`)
%(export_warning)s :func:`mne.write_evokeds` instead.
Parameters
----------
%(export_params_fname)s
evoked : Evoked instance, or list of Evoked instances
The evoked dataset, or list of evoked datasets, to export to one file.
Note that the measurement info from the first evoked instance is used,
so be sure that information matches.
fmt : 'auto' | 'mff'
Format of the export. Defaults to ``'auto'``, which will infer the
format from the filename extension. See supported formats above for
more information.
%(verbose)s
See Also
--------
mne.write_evokeds
mne.export.export_evokeds_mff
Notes
-----
.. versionadded:: 0.24
"""
supported_export_formats = {
'mff': ('mff',),
'eeglab': ('set',),
'edf': ('edf',),
'brainvision': ('eeg', 'vmrk', 'vhdr',)
}
fmt = _infer_check_export_fmt(fmt, fname, supported_export_formats)

if not isinstance(evoked, list):
evoked = [evoked]

logger.info(f'Exporting evoked dataset to {fname}...')

if fmt == 'mff':
export_evokeds_mff(fname, evoked)
elif fmt == 'eeglab':
raise NotImplementedError('Export to EEGLAB not implemented.')
elif fmt == 'edf':
raise NotImplementedError('Export to EDF not implemented.')
elif fmt == 'brainvision':
raise NotImplementedError('Export to BrainVision not implemented.')


def _infer_check_export_fmt(fmt, fname, supported_formats):
"""Infer export format from filename extension if auto.
Expand Down
86 changes: 83 additions & 3 deletions mne/export/tests/test_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,10 +11,18 @@
import numpy as np
from numpy.testing import assert_allclose, assert_array_equal

from mne import read_epochs_eeglab, Epochs
from mne.tests.test_epochs import _get_data
from mne import read_epochs_eeglab, Epochs, read_evokeds, read_evokeds_mff
from mne.datasets import testing
from mne.export import export_evokeds, export_evokeds_mff
from mne.io import read_raw_fif, read_raw_eeglab
from mne.utils import _check_eeglabio_installed
from mne.utils import _check_eeglabio_installed, requires_version, object_diff
from mne.tests.test_epochs import _get_data

base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
fname_evoked = op.join(base_dir, 'test-ave.fif')

data_path = testing.data_path(download=False)
egi_evoked_fname = op.join(data_path, 'EGI', 'test_egi_evoked.mff')


@pytest.mark.skipif(not _check_eeglabio_installed(strict=False),
Expand Down Expand Up @@ -62,3 +70,75 @@ def test_export_epochs_eeglab(tmpdir, preload):
assert epochs.event_id.keys() == epochs_read.event_id.keys() # just keys
assert_allclose(epochs.times, epochs_read.times)
assert_allclose(epochs.get_data(), epochs_read.get_data())


@requires_version('mffpy', '0.5.7')
@testing.requires_testing_data
@pytest.mark.parametrize('fmt', ('auto', 'mff'))
@pytest.mark.parametrize('do_history', (True, False))
def test_export_evokeds_to_mff(tmpdir, fmt, do_history):
"""Test exporting evoked dataset to MFF."""
evoked = read_evokeds_mff(egi_evoked_fname)
export_fname = op.join(str(tmpdir), 'evoked.mff')
history = [
{
'name': 'Test Segmentation',
'method': 'Segmentation',
'settings': ['Setting 1', 'Setting 2'],
'results': ['Result 1', 'Result 2']
},
{
'name': 'Test Averaging',
'method': 'Averaging',
'settings': ['Setting 1', 'Setting 2'],
'results': ['Result 1', 'Result 2']
}
]
if do_history:
export_evokeds_mff(export_fname, evoked, history=history)
else:
export_evokeds(export_fname, evoked)
# Drop non-EEG channels
evoked = [ave.drop_channels(['ECG', 'EMG']) for ave in evoked]
evoked_exported = read_evokeds_mff(export_fname)
assert len(evoked) == len(evoked_exported)
for ave, ave_exported in zip(evoked, evoked_exported):
# Compare infos
assert object_diff(ave_exported.info, ave.info) == ''
# Compare data
assert_allclose(ave_exported.data, ave.data)
# Compare properties
assert ave_exported.nave == ave.nave
assert ave_exported.kind == ave.kind
assert ave_exported.comment == ave.comment
assert_allclose(ave_exported.times, ave.times)


@requires_version('mffpy', '0.5.7')
@testing.requires_testing_data
def test_export_to_mff_no_device():
"""Test no device type throws ValueError."""
evoked = read_evokeds_mff(egi_evoked_fname, condition='Category 1')
evoked.info['device_info'] = None
with pytest.raises(ValueError, match='No device type.'):
export_evokeds('output.mff', evoked)


@requires_version('mffpy', '0.5.7')
def test_export_to_mff_incompatible_sfreq():
"""Test non-whole number sampling frequency throws ValueError."""
evoked = read_evokeds(fname_evoked)
with pytest.raises(ValueError, match=f'sfreq: {evoked[0].info["sfreq"]}'):
export_evokeds('output.mff', evoked)


@pytest.mark.parametrize('fmt,ext', [
('EEGLAB', 'set'),
('EDF', 'edf'),
('BrainVision', 'eeg')
])
def test_export_evokeds_unsupported_format(fmt, ext):
"""Test exporting evoked dataset to non-supported formats."""
evoked = read_evokeds(fname_evoked)
with pytest.raises(NotImplementedError, match=f'Export to {fmt} not imp'):
export_evokeds(f'output.{ext}', evoked)
2 changes: 1 addition & 1 deletion mne/io/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1455,7 +1455,7 @@ def export(self, fname, fmt='auto', verbose=None):
"""Export Raw to external formats.
Supported formats: EEGLAB (set, uses :mod:`eeglabio`)
%(export_warning)s
%(export_warning)s :meth:`save` instead.
Parameters
----------
Expand Down
Loading

0 comments on commit 8702d0e

Please sign in to comment.