forked from yu4u/age-gender-estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request yu4u#50 from yu4u/feature/lap
Feature/lap
- Loading branch information
Showing
2 changed files
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# LAP dataset | ||
|
||
The LAP dataset can be downloaded from the following site. | ||
|
||
http://chalearnlap.cvc.uab.es/dataset/19/description/ | ||
|
||
As the dataset is included in the APPA-REAL dataset, I recommend to use it instead of the LAP dataset. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import argparse | ||
import better_exceptions | ||
import sys | ||
import time | ||
from pathlib import Path | ||
import zipfile | ||
import bz2 | ||
import urllib.request | ||
import dlib | ||
import cv2 | ||
|
||
|
||
zip_names = ["train_1.zip", "train_2.zip", "train_gt.zip", "valid.zip", "valid_gt.zip"] | ||
urls = ["http://***/train_1.zip", | ||
"http://***/train_2.zip", | ||
"http://***/train_gt.zip", | ||
"http://***/valid.zip", | ||
"http://***/valid_gt.zip"] | ||
gt_pwd = b"***" | ||
|
||
dataset_root = Path(__file__).resolve().parent.joinpath("dataset") | ||
model_root = Path(__file__).resolve().parent.joinpath("model") | ||
train_image_dir = dataset_root.joinpath("train_images") | ||
validation_image_dir = dataset_root.joinpath("validation_images") | ||
train_crop_dir = dataset_root.joinpath("train_crop") | ||
validation_crop_dir = dataset_root.joinpath("validation_crop") | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser(description="This script downloads the LAP dataset " | ||
"and preprocess for training and evaluation", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
subparsers = parser.add_subparsers(help="subcommands", dest="subcommand") | ||
subparsers.add_parser("download", help="Downdload the LAP dataset") | ||
subparsers.add_parser("extract", help="Unzip the LAP dataset") | ||
subparsers.add_parser("crop", help="Crop face regions using dlib") | ||
args = parser.parse_args() | ||
|
||
return parser, args | ||
|
||
|
||
def reporthook(count, block_size, total_size): | ||
global start_time | ||
|
||
if count == 0: | ||
start_time = time.time() | ||
return | ||
|
||
duration = int(time.time() - start_time) | ||
current_size = count * block_size | ||
remaining_size = total_size - current_size | ||
speed = int(current_size / (1024 * duration + 1)) | ||
percent = min(int(count * block_size * 100 / total_size), 100) | ||
remaining_time = int(duration * (remaining_size / current_size)) | ||
sys.stdout.write("\r{}%, {:6.2f}/{:6.2f}MB, {}KB/s, passed: {}s, remaining: {}s".format( | ||
percent, current_size / (1024 * 1024), total_size / (1024 * 1024), speed, duration, remaining_time)) | ||
sys.stdout.flush() | ||
|
||
|
||
def download(): | ||
dataset_root.mkdir(parents=True, exist_ok=True) # requires Python 3.5 or above | ||
|
||
for zip_name, url in zip(zip_names, urls): | ||
print("downloading {}".format(zip_name)) | ||
local_path = dataset_root.joinpath(zip_name) | ||
urllib.request.urlretrieve(url, str(local_path), reporthook) | ||
|
||
|
||
def crop(): | ||
detector_model_path = model_root.joinpath("mmod_human_face_detector.dat") | ||
|
||
if not detector_model_path.is_file(): | ||
model_root.mkdir(parents=True, exist_ok=True) # requires Python 3.5 or above | ||
detector_model_url = "http://dlib.net/files/mmod_human_face_detector.dat.bz2" | ||
detector_model_bz2 = str(detector_model_path) + ".bz2" | ||
print("downloading {}".format(detector_model_path.name)) | ||
urllib.request.urlretrieve(detector_model_url, detector_model_bz2, reporthook) | ||
|
||
with open(detector_model_bz2, "rb") as source, open(str(detector_model_path), "wb") as dest: | ||
dest.write(bz2.decompress(source.read())) | ||
|
||
detector = dlib.cnn_face_detection_model_v1(str(detector_model_path)) | ||
|
||
for image_dir, crop_dir in [[train_image_dir, train_crop_dir], [validation_image_dir, validation_crop_dir]]: | ||
for image_path in image_dir.glob("*.jpg"): | ||
frame = cv2.imread(str(image_path)) | ||
img_h, img_w, _ = frame.shape | ||
factor = 800 / max(img_h, img_w) | ||
frame_resized = cv2.resize(frame, None, fx=factor, fy=factor) | ||
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB) | ||
dets = detector(frame_rgb, 1) | ||
|
||
if len(dets) != 1: | ||
print("{} faces were detected for {}".format(len(dets), image_path.name)) | ||
rects = [[d.rect.left(), d.rect.right(), d.rect.top(), d.rect.bottom()] for d in dets] | ||
print(rects) | ||
|
||
|
||
def extract(): | ||
for zip_name in zip_names: | ||
zip_path = dataset_root.joinpath(zip_name) | ||
password = None | ||
|
||
if not zip_path.is_file(): | ||
raise RuntimeError("{} was not found. Please download the LAP dataset.".format(zip_name)) | ||
|
||
with zipfile.ZipFile(str(zip_path), "r") as f: | ||
|
||
if zip_name in ["train_1.zip", "train_2.zip"]: | ||
extract_path = train_image_dir | ||
elif zip_name == "valid.zip": | ||
extract_path = validation_image_dir | ||
else: | ||
extract_path = dataset_root | ||
|
||
if zip_name == "valid_gt.zip": | ||
password = gt_pwd | ||
|
||
extract_path.mkdir(parents=True, exist_ok=True) # requires Python 3.5 or above | ||
f.extractall(path=str(extract_path), pwd=password) | ||
|
||
|
||
def main(): | ||
parser, args = get_args() | ||
|
||
if args.subcommand == "download": | ||
download() | ||
elif args.subcommand == "extract": | ||
extract() | ||
elif args.subcommand == "crop": | ||
crop() | ||
else: | ||
parser.print_help() | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |