forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Support DINO & DETR and add PaddleDetectionModel class (Paddl…
…ePaddle#1837) * 添加paddleclas模型 * 更新README_CN * 更新README_CN * 更新README * update get_model.sh * update get_models.sh * update paddleseg models * update paddle_seg models * update paddle_seg models * modified test resources * update benchmark_gpu_trt.sh * add paddle detection * add paddledetection to benchmark * modified benchmark cmakelists * update benchmark scripts * modified benchmark function calling * modified paddledetection documents * add PaddleDetectonModel * reset examples/paddledetection * resolve conflict * update pybind * resolve conflict * fix bug * delete debug mode * update checkarch log * update trt inputs example * Update README.md --------- Co-authored-by: DefTruth <[email protected]>
- Loading branch information
1 parent
6d0261e
commit 9164796
Showing
11 changed files
with
378 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "flags.h" | ||
#include "macros.h" | ||
#include "option.h" | ||
|
||
namespace vision = fastdeploy::vision; | ||
namespace benchmark = fastdeploy::benchmark; | ||
|
||
DEFINE_bool(no_nms, false, "Whether the model contains nms."); | ||
|
||
int main(int argc, char* argv[]) { | ||
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) | ||
// Initialization | ||
auto option = fastdeploy::RuntimeOption(); | ||
if (!CreateRuntimeOption(&option, argc, argv, true)) { | ||
return -1; | ||
} | ||
auto im = cv::imread(FLAGS_image); | ||
std::unordered_map<std::string, std::string> config_info; | ||
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path, | ||
&config_info); | ||
std::string model_name, params_name, config_name; | ||
auto model_format = fastdeploy::ModelFormat::PADDLE; | ||
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name, | ||
&model_format, config_info)) { | ||
return -1; | ||
} | ||
auto model_file = FLAGS_model + sep + model_name; | ||
auto params_file = FLAGS_model + sep + params_name; | ||
auto config_file = FLAGS_model + sep + config_name; | ||
if (config_info["backend"] == "paddle_trt") { | ||
option.paddle_infer_option.collect_trt_shape = true; | ||
} | ||
if (config_info["backend"] == "paddle_trt" || | ||
config_info["backend"] == "trt") { | ||
option.trt_option.SetShape("im_shape",{1,2},{1,2},{1,2}); | ||
option.trt_option.SetShape("image", {1, 3, 320,320},{1, 3, 640, 640}, | ||
{1, 3, 1280, 1280}); | ||
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2}, | ||
{1, 2}); | ||
} | ||
auto model_ppdet = vision::detection::PaddleDetectionModel( | ||
model_file, params_file, config_file, option, model_format); | ||
vision::DetectionResult res; | ||
if (config_info["precision_compare"] == "true") { | ||
// Run once at least | ||
model_ppdet.Predict(im, &res); | ||
// 1. Test result diff | ||
std::cout << "=============== Test result diff =================\n"; | ||
// Save result to -> disk. | ||
std::string det_result_path = "ppdet_result.txt"; | ||
benchmark::ResultManager::SaveDetectionResult(res, det_result_path); | ||
// Load result from <- disk. | ||
vision::DetectionResult res_loaded; | ||
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path); | ||
// Calculate diff between two results. | ||
auto det_diff = | ||
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); | ||
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean | ||
<< ", max=" << det_diff.boxes.max | ||
<< ", min=" << det_diff.boxes.min << std::endl; | ||
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean | ||
<< ", max=" << det_diff.labels.max | ||
<< ", min=" << det_diff.labels.min << std::endl; | ||
// 2. Test tensor diff | ||
std::cout << "=============== Test tensor diff =================\n"; | ||
std::vector<vision::DetectionResult> batch_res; | ||
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors; | ||
std::vector<cv::Mat> imgs; | ||
imgs.push_back(im); | ||
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs); | ||
|
||
model_ppdet.GetPreprocessor().Run(&fd_images, &input_tensors); | ||
input_tensors[0].name = "image"; | ||
input_tensors[1].name = "scale_factor"; | ||
input_tensors[2].name = "im_shape"; | ||
input_tensors.pop_back(); | ||
model_ppdet.Infer(input_tensors, &output_tensors); | ||
model_ppdet.GetPostprocessor().Run(output_tensors, &batch_res); | ||
// Save tensor to -> disk. | ||
auto& tensor_dump = output_tensors[0]; | ||
std::string det_tensor_path = "ppdet_tensor.txt"; | ||
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path); | ||
// Load tensor from <- disk. | ||
fastdeploy::FDTensor tensor_loaded; | ||
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path); | ||
// Calculate diff between two tensors. | ||
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis( | ||
tensor_dump, tensor_loaded); | ||
std::cout << "Tensor diff: mean=" << det_tensor_diff.data.mean | ||
<< ", max=" << det_tensor_diff.data.max | ||
<< ", min=" << det_tensor_diff.data.min << std::endl; | ||
} | ||
// Run profiling | ||
if (FLAGS_no_nms) { | ||
model_ppdet.GetPostprocessor().ApplyNMS(); | ||
} | ||
BENCHMARK_MODEL(model_ppdet, model_ppdet.Predict(im, &res)) | ||
auto vis_im = vision::VisDetection(im, res,0.3); | ||
cv::imwrite("vis_result.jpg", vis_im); | ||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; | ||
#endif | ||
|
||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "flags.h" | ||
#include "macros.h" | ||
#include "option.h" | ||
|
||
namespace vision = fastdeploy::vision; | ||
namespace benchmark = fastdeploy::benchmark; | ||
|
||
DEFINE_bool(no_nms, false, "Whether the model contains nms."); | ||
|
||
int main(int argc, char* argv[]) { | ||
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) | ||
// Initialization | ||
auto option = fastdeploy::RuntimeOption(); | ||
if (!CreateRuntimeOption(&option, argc, argv, true)) { | ||
return -1; | ||
} | ||
auto im = cv::imread(FLAGS_image); | ||
std::unordered_map<std::string, std::string> config_info; | ||
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path, | ||
&config_info); | ||
std::string model_name, params_name, config_name; | ||
auto model_format = fastdeploy::ModelFormat::PADDLE; | ||
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name, | ||
&model_format, config_info)) { | ||
return -1; | ||
} | ||
auto model_file = FLAGS_model + sep + model_name; | ||
auto params_file = FLAGS_model + sep + params_name; | ||
auto config_file = FLAGS_model + sep + config_name; | ||
if (config_info["backend"] == "paddle_trt") { | ||
option.paddle_infer_option.collect_trt_shape = true; | ||
} | ||
if (config_info["backend"] == "paddle_trt" || | ||
config_info["backend"] == "trt") { | ||
option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640}, | ||
{1, 3, 640, 640}); | ||
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2}, | ||
{1, 2}); | ||
} | ||
auto model_ppdet = vision::detection::PaddleDetectionModel( | ||
model_file, params_file, config_file, option, model_format); | ||
vision::DetectionResult res; | ||
if (config_info["precision_compare"] == "true") { | ||
// Run once at least | ||
model_ppdet.Predict(im, &res); | ||
// 1. Test result diff | ||
std::cout << "=============== Test result diff =================\n"; | ||
// Save result to -> disk. | ||
std::string det_result_path = "ppdet_result.txt"; | ||
benchmark::ResultManager::SaveDetectionResult(res, det_result_path); | ||
// Load result from <- disk. | ||
vision::DetectionResult res_loaded; | ||
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path); | ||
// Calculate diff between two results. | ||
auto det_diff = | ||
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); | ||
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean | ||
<< ", max=" << det_diff.boxes.max | ||
<< ", min=" << det_diff.boxes.min << std::endl; | ||
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean | ||
<< ", max=" << det_diff.labels.max | ||
<< ", min=" << det_diff.labels.min << std::endl; | ||
// 2. Test tensor diff | ||
std::cout << "=============== Test tensor diff =================\n"; | ||
std::vector<vision::DetectionResult> batch_res; | ||
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors; | ||
std::vector<cv::Mat> imgs; | ||
imgs.push_back(im); | ||
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs); | ||
|
||
model_ppdet.GetPreprocessor().Run(&fd_images, &input_tensors); | ||
input_tensors[0].name = "image"; | ||
input_tensors[1].name = "scale_factor"; | ||
input_tensors[2].name = "im_shape"; | ||
input_tensors.pop_back(); | ||
model_ppdet.Infer(input_tensors, &output_tensors); | ||
model_ppdet.GetPostprocessor().Run(output_tensors, &batch_res); | ||
// Save tensor to -> disk. | ||
auto& tensor_dump = output_tensors[0]; | ||
std::string det_tensor_path = "ppdet_tensor.txt"; | ||
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path); | ||
// Load tensor from <- disk. | ||
fastdeploy::FDTensor tensor_loaded; | ||
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path); | ||
// Calculate diff between two tensors. | ||
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis( | ||
tensor_dump, tensor_loaded); | ||
std::cout << "Tensor diff: mean=" << det_tensor_diff.data.mean | ||
<< ", max=" << det_tensor_diff.data.max | ||
<< ", min=" << det_tensor_diff.data.min << std::endl; | ||
} | ||
// Run profiling | ||
if (FLAGS_no_nms) { | ||
model_ppdet.GetPostprocessor().ApplyNMS(); | ||
} | ||
BENCHMARK_MODEL(model_ppdet, model_ppdet.Predict(im, &res)) | ||
auto vis_im = vision::VisDetection(im, res,0.3); | ||
cv::imwrite("vis_result.jpg", vis_im); | ||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; | ||
#endif | ||
|
||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.