-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
355 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,355 @@ | ||
|
||
""" | ||
The MIT License | ||
Copyright (c) 2021 MatNet | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in | ||
all copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
THE SOFTWARE. | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
from ATSPModel_LIB import AddAndInstanceNormalization, FeedForward, MixedScore_MultiHeadAttention | ||
|
||
|
||
class ATSPModel(nn.Module): | ||
|
||
def __init__(self, **model_params): | ||
super().__init__() | ||
self.model_params = model_params | ||
|
||
self.encoder = ATSP_Encoder(**model_params) | ||
self.decoder = ATSP_Decoder(**model_params) | ||
|
||
self.encoded_row = None | ||
self.encoded_col = None | ||
# shape: (batch, node, embedding) | ||
|
||
def pre_forward(self, reset_state): | ||
|
||
problems = reset_state.problems | ||
# problems.shape: (batch, node, node) | ||
|
||
batch_size = problems.size(0) | ||
node_cnt = problems.size(1) | ||
embedding_dim = self.model_params['embedding_dim'] | ||
|
||
row_emb = torch.zeros(size=(batch_size, node_cnt, embedding_dim)) | ||
# emb.shape: (batch, node, embedding) | ||
col_emb = torch.zeros(size=(batch_size, node_cnt, embedding_dim)) | ||
# shape: (batch, node, embedding) | ||
|
||
seed_cnt = self.model_params['one_hot_seed_cnt'] | ||
rand = torch.rand(batch_size, seed_cnt) | ||
batch_rand_perm = rand.argsort(dim=1) | ||
rand_idx = batch_rand_perm[:, :node_cnt] | ||
|
||
b_idx = torch.arange(batch_size)[:, None].expand(batch_size, node_cnt) | ||
n_idx = torch.arange(node_cnt)[None, :].expand(batch_size, node_cnt) | ||
col_emb[b_idx, n_idx, rand_idx] = 1 | ||
# shape: (batch, node, embedding) | ||
|
||
self.encoded_row, self.encoded_col = self.encoder(row_emb, col_emb, problems) | ||
# encoded_nodes.shape: (batch, node, embedding) | ||
|
||
self.decoder.set_kv(self.encoded_col) | ||
|
||
def forward(self, state): | ||
|
||
batch_size = state.BATCH_IDX.size(0) | ||
pomo_size = state.BATCH_IDX.size(1) | ||
|
||
encoded_current_row = _get_encoding(self.encoded_row, state.current_node) | ||
|
||
if (state.current_node == 0).all(): | ||
# selected = torch.arange(pomo_size)[None, :].expand(batch_size, pomo_size) | ||
# prob = torch.ones(size=(batch_size, pomo_size)) | ||
|
||
# encoded_rows_mean = self.encoded_row.mean(dim=1, keepdim=True) | ||
# encoded_cols_mean = self.encoded_col.mean(dim=1, keepdim=True) | ||
# # shape: (batch, 1, embedding) | ||
# encoded_first_row = _get_encoding(self.encoded_row, state.current_node) | ||
# shape: (batch, pomo, embedding) | ||
self.decoder.set_q1(encoded_current_row) | ||
|
||
|
||
# shape: (batch, pomo, embedding) | ||
all_job_probs = self.decoder(encoded_current_row, ninf_mask=state.ninf_mask) | ||
# shape: (batch, pomo, job) | ||
|
||
if self.training or self.model_params['eval_type'] == 'softmax': | ||
while True: # to fix pytorch.multinomial bug on selecting 0 probability elements | ||
with torch.no_grad(): | ||
selected = all_job_probs.reshape(batch_size * pomo_size, -1).multinomial(1) \ | ||
.squeeze(dim=1).reshape(batch_size, pomo_size) | ||
# shape: (batch, pomo) | ||
|
||
prob = all_job_probs[state.BATCH_IDX, state.POMO_IDX, selected] \ | ||
.reshape(batch_size, pomo_size) | ||
# shape: (batch, pomo) | ||
|
||
if (prob != 0).all(): | ||
break | ||
else: | ||
selected = all_job_probs.argmax(dim=2) | ||
# shape: (batch, pomo) | ||
prob = None | ||
|
||
return selected, prob | ||
|
||
|
||
def _get_encoding(encoded_nodes, node_index_to_pick): | ||
# encoded_nodes.shape: (batch, problem, embedding) | ||
# node_index_to_pick.shape: (batch, pomo) | ||
|
||
batch_size = node_index_to_pick.size(0) | ||
pomo_size = node_index_to_pick.size(1) | ||
embedding_dim = encoded_nodes.size(2) | ||
|
||
gathering_index = node_index_to_pick[:, :, None].expand(batch_size, pomo_size, embedding_dim) | ||
# shape: (batch, pomo, embedding) | ||
|
||
picked_nodes = encoded_nodes.gather(dim=1, index=gathering_index) | ||
# shape: (batch, pomo, embedding) | ||
|
||
return picked_nodes | ||
|
||
|
||
######################################## | ||
# ENCODER | ||
######################################## | ||
class ATSP_Encoder(nn.Module): | ||
def __init__(self, **model_params): | ||
super().__init__() | ||
encoder_layer_num = model_params['encoder_layer_num'] | ||
self.layers = nn.ModuleList([EncoderLayer(**model_params) for _ in range(encoder_layer_num)]) | ||
|
||
def forward(self, row_emb, col_emb, cost_mat): | ||
# col_emb.shape: (batch, col_cnt, embedding) | ||
# row_emb.shape: (batch, row_cnt, embedding) | ||
# cost_mat.shape: (batch, row_cnt, col_cnt) | ||
|
||
for layer in self.layers: | ||
row_emb, col_emb = layer(row_emb, col_emb, cost_mat) | ||
|
||
return row_emb, col_emb | ||
|
||
|
||
class EncoderLayer(nn.Module): | ||
def __init__(self, **model_params): | ||
super().__init__() | ||
self.row_encoding_block = EncodingBlock(**model_params) | ||
self.col_encoding_block = EncodingBlock(**model_params) | ||
|
||
def forward(self, row_emb, col_emb, cost_mat): | ||
# row_emb.shape: (batch, row_cnt, embedding) | ||
# col_emb.shape: (batch, col_cnt, embedding) | ||
# cost_mat.shape: (batch, row_cnt, col_cnt) | ||
row_emb_out = self.row_encoding_block(row_emb, col_emb, cost_mat) | ||
col_emb_out = self.col_encoding_block(col_emb, row_emb, cost_mat.transpose(1, 2)) | ||
|
||
return row_emb_out, col_emb_out | ||
|
||
|
||
class EncodingBlock(nn.Module): | ||
def __init__(self, **model_params): | ||
super().__init__() | ||
self.model_params = model_params | ||
embedding_dim = self.model_params['embedding_dim'] | ||
head_num = self.model_params['head_num'] | ||
qkv_dim = self.model_params['qkv_dim'] | ||
|
||
self.Wq = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
self.Wk = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
self.Wv = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
self.mixed_score_MHA = MixedScore_MultiHeadAttention(**model_params) | ||
self.multi_head_combine = nn.Linear(head_num * qkv_dim, embedding_dim) | ||
|
||
self.add_n_normalization_1 = AddAndInstanceNormalization(**model_params) | ||
self.feed_forward = FeedForward(**model_params) | ||
self.add_n_normalization_2 = AddAndInstanceNormalization(**model_params) | ||
|
||
def forward(self, row_emb, col_emb, cost_mat): | ||
# NOTE: row and col can be exchanged, if cost_mat.transpose(1,2) is used | ||
# input1.shape: (batch, row_cnt, embedding) | ||
# input2.shape: (batch, col_cnt, embedding) | ||
# cost_mat.shape: (batch, row_cnt, col_cnt) | ||
head_num = self.model_params['head_num'] | ||
|
||
q = reshape_by_heads(self.Wq(row_emb), head_num=head_num) | ||
# q shape: (batch, head_num, row_cnt, qkv_dim) | ||
k = reshape_by_heads(self.Wk(col_emb), head_num=head_num) | ||
v = reshape_by_heads(self.Wv(col_emb), head_num=head_num) | ||
# kv shape: (batch, head_num, col_cnt, qkv_dim) | ||
|
||
out_concat = self.mixed_score_MHA(q, k, v, cost_mat) | ||
# shape: (batch, row_cnt, head_num*qkv_dim) | ||
|
||
multi_head_out = self.multi_head_combine(out_concat) | ||
# shape: (batch, row_cnt, embedding) | ||
|
||
out1 = self.add_n_normalization_1(row_emb, multi_head_out) | ||
out2 = self.feed_forward(out1) | ||
out3 = self.add_n_normalization_2(out1, out2) | ||
|
||
return out3 | ||
# shape: (batch, row_cnt, embedding) | ||
|
||
|
||
######################################## | ||
# Decoder | ||
######################################## | ||
|
||
class ATSP_Decoder(nn.Module): | ||
def __init__(self, **model_params): | ||
super().__init__() | ||
self.model_params = model_params | ||
embedding_dim = self.model_params['embedding_dim'] | ||
head_num = self.model_params['head_num'] | ||
qkv_dim = self.model_params['qkv_dim'] | ||
|
||
self.Wq_0 = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
self.Wq_1 = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
self.Wk = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
self.Wv = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False) | ||
|
||
self.multi_head_combine = nn.Linear(head_num * qkv_dim, embedding_dim) | ||
|
||
self.k = None # saved key, for multi-head attention | ||
self.v = None # saved value, for multi-head_attention | ||
self.single_head_key = None # saved key, for single-head attention | ||
self.q1 = None # saved q1, for multi-head attention | ||
|
||
def set_kv(self, encoded_jobs): | ||
# encoded_jobs.shape: (batch, job, embedding) | ||
head_num = self.model_params['head_num'] | ||
|
||
self.k = reshape_by_heads(self.Wk(encoded_jobs), head_num=head_num) | ||
self.v = reshape_by_heads(self.Wv(encoded_jobs), head_num=head_num) | ||
# shape: (batch, head_num, job, qkv_dim) | ||
self.single_head_key = encoded_jobs.transpose(1, 2) | ||
# shape: (batch, embedding, job) | ||
|
||
def set_q1(self, encoded_q1): | ||
# encoded_q.shape: (batch, n, embedding) # n can be 1 or pomo | ||
head_num = self.model_params['head_num'] | ||
|
||
self.q1 = reshape_by_heads(self.Wq_1(encoded_q1), head_num=head_num) | ||
# shape: (batch, head_num, n, qkv_dim) | ||
|
||
def forward(self, encoded_q0, ninf_mask): | ||
# encoded_q4.shape: (batch, pomo, embedding) | ||
# ninf_mask.shape: (batch, pomo, job) | ||
|
||
head_num = self.model_params['head_num'] | ||
|
||
# Multi-Head Attention | ||
####################################################### | ||
q0 = reshape_by_heads(self.Wq_0(encoded_q0), head_num=head_num) | ||
# shape: (batch, head_num, pomo, qkv_dim) | ||
|
||
q = self.q1 + q0 | ||
# shape: (batch, head_num, pomo, qkv_dim) | ||
|
||
out_concat = self._multi_head_attention(q, self.k, self.v, rank3_ninf_mask=ninf_mask) | ||
# shape: (batch, pomo, head_num*qkv_dim) | ||
|
||
mh_atten_out = self.multi_head_combine(out_concat) | ||
# shape: (batch, pomo, embedding) | ||
|
||
# Single-Head Attention, for probability calculation | ||
####################################################### | ||
score = torch.matmul(mh_atten_out, self.single_head_key) | ||
# shape: (batch, pomo, job) | ||
|
||
sqrt_embedding_dim = self.model_params['sqrt_embedding_dim'] | ||
logit_clipping = self.model_params['logit_clipping'] | ||
|
||
score_scaled = score / sqrt_embedding_dim | ||
# shape: (batch, pomo, job) | ||
|
||
score_clipped = logit_clipping * torch.tanh(score_scaled) | ||
|
||
score_masked = score_clipped + ninf_mask | ||
|
||
probs = F.softmax(score_masked, dim=2) | ||
# shape: (batch, pomo, job) | ||
|
||
return probs | ||
|
||
def _multi_head_attention(self, q, k, v, rank2_ninf_mask=None, rank3_ninf_mask=None): | ||
# q shape: (batch, head_num, n, key_dim) : n can be either 1 or pomo | ||
# k,v shape: (batch, head_num, node, key_dim) | ||
# rank2_ninf_mask.shape: (batch, node) | ||
# rank3_ninf_mask.shape: (batch, group, node) | ||
|
||
batch_s = q.size(0) | ||
n = q.size(2) | ||
node_cnt = k.size(2) | ||
|
||
head_num = self.model_params['head_num'] | ||
qkv_dim = self.model_params['qkv_dim'] | ||
sqrt_qkv_dim = self.model_params['sqrt_qkv_dim'] | ||
|
||
score = torch.matmul(q, k.transpose(2, 3)) | ||
# shape: (batch, head_num, n, node) | ||
|
||
score_scaled = score / sqrt_qkv_dim | ||
if rank2_ninf_mask is not None: | ||
score_scaled = score_scaled + rank2_ninf_mask[:, None, None, :].expand(batch_s, head_num, n, node_cnt) | ||
if rank3_ninf_mask is not None: | ||
score_scaled = score_scaled + rank3_ninf_mask[:, None, :, :].expand(batch_s, head_num, n, node_cnt) | ||
|
||
weights = nn.Softmax(dim=3)(score_scaled) | ||
# shape: (batch, head_num, n, node) | ||
|
||
out = torch.matmul(weights, v) | ||
# shape: (batch, head_num, n, key_dim) | ||
|
||
out_transposed = out.transpose(1, 2) | ||
# shape: (batch, n, head_num, key_dim) | ||
|
||
out_concat = out_transposed.reshape(batch_s, n, head_num * qkv_dim) | ||
# shape: (batch, n, head_num*key_dim) | ||
|
||
return out_concat | ||
|
||
|
||
######################################## | ||
# NN SUB FUNCTIONS | ||
######################################## | ||
|
||
def reshape_by_heads(qkv, head_num): | ||
# q.shape: (batch, n, head_num*key_dim) : n can be either 1 or PROBLEM_SIZE | ||
|
||
batch_s = qkv.size(0) | ||
n = qkv.size(1) | ||
|
||
q_reshaped = qkv.reshape(batch_s, n, head_num, -1) | ||
# shape: (batch, n, head_num, key_dim) | ||
|
||
q_transposed = q_reshaped.transpose(1, 2) | ||
# shape: (batch, head_num, n, key_dim) | ||
|
||
return q_transposed |