Data cleansing, enrichment and suggestions via Dadata API
Thin PHP wrapper over Dadata API.
composer require hflabs/dadata
Requirements:
- PHP 5.6+
- Guzzle 6 or 7
Create API client instance:
> $token = "Replace with Dadata API key";
> $secret = "Replace with Dadata secret key";
> $dadata = new \Dadata\DadataClient($token, $secret);
Then call API methods as specified below.
> $response = $dadata->clean("address", "мск сухонская 11 89");
> var_dump($response);
array(80) {
["source"]=>
string(31) "мск сухонская 11 89"
["result"]=>
string(56) "г Москва, ул Сухонская, д 11, кв 89"
["postal_code"]=>
string(6) "127642"
["country"]=>
string(12) "Россия"
["federal_district"]=>
string(22) "Центральный"
["region"]=>
string(12) "Москва"
["city_area"]=>
string(31) "Северо-восточный"
["city_district"]=>
string(37) "Северное Медведково"
["street"]=>
string(18) "Сухонская"
["house"]=>
string(2) "11"
["flat"]=>
string(2) "89"
["flat_area"]=>
string(4) "34.6"
["flat_price"]=>
string(7) "6854710"
["fias_id"]=>
string(36) "5ee84ac0-eb9a-4b42-b814-2f5f7c27c255"
["timezone"]=>
string(5) "UTC+3"
["geo_lat"]=>
string(10) "55.8782557"
["geo_lon"]=>
string(8) "37.65372"
["qc_geo"]=>
int(0)
["metro"]=>
array(3) {...}
}
Same API method as "validate and cleanse":
> $response = $dadata->clean("address", "мск сухонская 11 89");
> var_dump($response);
array(80) {
["source"]=>
string(31) "мск сухонская 11 89"
["result"]=>
string(56) "г Москва, ул Сухонская, д 11, кв 89"
...
["geo_lat"]=>
string(10) "55.8782557"
["geo_lon"]=>
string(8) "37.65372"
["beltway_hit"]=>
string(7) "IN_MKAD"
["beltway_distance"]=>
NULL
["qc_geo"]=>
int(0)
...
}
> $response = $dadata->geolocate("address", 55.878, 37.653);
> var_dump($response);
array(4) {
[0]=>
array(3) {
["value"]=>
string(47) "г Москва, ул Сухонская, д 11"
...
}
[1]=>
array(3) {
["value"]=>
string(49) "г Москва, ул Сухонская, д 11А"
...
}
[2]=>
array(3) {
["value"]=>
string(47) "г Москва, ул Сухонская, д 13"
...
}
...
}
> $response = $dadata->iplocate("46.226.227.20");
> var_dump($response);
array(3) {
["value"]=>
string(21) "г Краснодар"
["unrestricted_value"]=>
string(66) "350000, Краснодарский край, г Краснодар"
["data"]=>
array(81) {
...
}
}
> $response = $dadata->suggest("address", "самара метал");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(49) "г Самара, пр-кт Металлургов"
...
}
[1]=>
array(3) {
["value"]=>
string(44) "г Самара, ул Металлистов"
...
}
[2]=>
array(3) {
["value"]=>
string(95) "г Самара, поселок Зубчаниновка, ул Металлургическая"
...
}
...
}
Show suggestions in English:
> $response = $dadata->suggest("address", "samara metal", 5, ["language" => "en"]);
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(42) "Russia, gorod Samara, prospekt Metallurgov"
...
}
[1]=>
array(3) {
["value"]=>
string(39) "Russia, gorod Samara, ulitsa Metallistov"
...
}
[2]=>
array(3) {
["value"]=>
string(69) "Russia, gorod Samara, poselok Zubchaninovka, ulitsa Metallurgicheskaya"
...
}
...
}
Constrain by city (Yuzhno-Sakhalinsk):
> $locations = [[ "kladr_id" => "6500000100000" ]];
> $response = $dadata->suggest("address", "Ватутина", 5, ["locations" => $locations]);
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(53) "г Южно-Сахалинск, ул Ватутина"
...
}
}
Constrain by specific geo point and radius (in Vologda city):
> $geo = [[ "lat" => 59.244634, "lon" => 39.913355, "radius_meters" => 200 ]];
> $response = $dadata->suggest("address", "сухонская", 5, ["locations_geo" => $geo]);
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(42) "г Вологда, ул Сухонская"
...
}
}
Boost city to top (Toliatti):
> $boost = [[ "kladr_id" => "6300000700000" ]];
> $response = $dadata->suggest("address", "авто", 5, ["locations_boost" => $boost]);
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(85) "Самарская обл, г Тольятти, Автозаводское шоссе"
...
}
[1]=>
array(3) {
["value"]=>
string(81) "Самарская обл, г Тольятти, ул Автомобилистов"
...
}
[2]=>
array(3) {
["value"]=>
string(81) "Самарская обл, г Тольятти, ул Автостроителей"
...
}
...
}
> $response = $dadata->findById("address", "9120b43f-2fae-4838-a144-85e43c2bfb29");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(36) "г Москва, ул Снежная"
...
}
}
Find by KLADR ID:
> $response = $dadata->findById("address", "77000000000268400");
Suggest postal office by address or code:
> $response = $dadata->suggest("postal_unit", "дежнева 2а");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(6) "127642"
["unrestricted_value"]=>
string(52) "г Москва, проезд Дежнёва, д 2А"
["data"]=>
array(15) {
...
}
}
}
Find postal office by code:
> $response = $dadata->findById("postal_unit", "127642");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(6) "127642"
["unrestricted_value"]=>
string(52) "г Москва, проезд Дежнёва, д 2А"
["data"]=>
array(15) {
...
}
}
}
Find nearest postal office:
> $response = $dadata->geolocate("postal_unit", 55.878, 37.653, 1000);
> var_dump($response);
array(2) {
[0]=>
array(3) {
["value"]=>
string(6) "127642"
["unrestricted_value"]=>
string(52) "г Москва, проезд Дежнёва, д 2А"
["data"]=>
array(15) {
...
}
},
...
}
> $response = $dadata->findById("delivery", "3100400100000");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(13) "3100400100000"
["unrestricted_value"]=>
string(36) "fe7eea4a-875a-4235-aa61-81c2a37a0440"
["data"]=>
array(5) {
...
["boxberry_id"]=>
string(5) "01929"
["cdek_id"]=>
string(3) "344"
["dpd_id"]=>
string(9) "196006461"
}
}
}
> $response = $dadata->findById("fias", "9120b43f-2fae-4838-a144-85e43c2bfb29");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(36) "г Москва, ул Снежная"
...
}
}
> $response = $dadata->suggest("country", "та");
> var_dump($response);
array(4) {
[0]=>
array(3) {
["value"]=>
string(22) "Таджикистан"
...
},
[1]=>
array(3) {
["value"]=>
string(14) "Таиланд"
...
}
[2]=>
array(3) {
["value"]=>
string(14) "Тайвань"
...
}
...
}
> $response = $dadata->findById("party", "7707083893");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(23) "ПАО СБЕРБАНК"
["unrestricted_value"]=>
string(23) "ПАО СБЕРБАНК"
["data"]=>
array(29) {
["kpp"]=>
string(9) "773601001"
["inn"]=>
string(10) "7707083893"
...
}
},
...
}
Find by INN and KPP:
> $response = $dadata->findById("party", "7707083893", 1, ["kpp" => "540602001"]);
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(51) "СИБИРСКИЙ БАНК ПАО СБЕРБАНК"
["unrestricted_value"]=>
string(51) "СИБИРСКИЙ БАНК ПАО СБЕРБАНК"
["data"]=>
array(29) {
["kpp"]=>
string(9) "540602001"
["inn"]=>
string(10) "7707083893"
...
}
}
}
> $response = $dadata->suggest("party", "сбер");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(23) "ПАО СБЕРБАНК"
...
}
[1]=>
array(3) {
["value"]=>
string(48) "АО "СБЕРЭНЕРГОСЕРВИС-ЮГРА""
...
}
[2]=>
array(3) {
["value"]=>
string(27) "АО "СБЕРБРОКЕР""
...
}
...
}
Constrain by specific regions (Saint Petersburg and Leningradskaya oblast):
> $locations = [[ "kladr_id" => "7800000000000" ], [ "kladr_id" => "4700000000000"]];
> $response = $dadata->suggest("party", "сбер", 5, ["locations" => $locations]);
Constrain by active companies:
> $status = [ "ACTIVE" ];
> $response = $dadata->suggest("party", "сбер", 5, ["status" => $status]);
Constrain by individual entrepreneurs:
> $response = $dadata->suggest("party", "сбер", 5, ["type" => "INDIVIDUAL"]);
Constrain by head companies, no branches:
> $branch_type = [ "MAIN" ];
> $response = $dadata->suggest("party", "сбер", 5, ["branch_type" => $branch_type]);
> $response = $dadata->findAffiliated("7736207543");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(36) "ООО "ДЗЕН.ПЛАТФОРМА""
...
}
[1]=>
array(3) {
["value"]=>
string(21) "ООО "ЕДАДИЛ""
...
}
[2]=>
array(3) {
["value"]=>
string(21) "ООО "ЗНАНИЕ""
...
}
...
}
Search only by manager INN:
> $response = $dadata->findAffiliated("773006366201", 5, ["scope" => "MANAGERS"]);
> var_dump($response);
array(3) {
[0]=>
array(3) {
["value"]=>
string(21) "ООО "ЯНДЕКС""
...
}
[1]=>
array(3) {
["value"]=>
string(13) "МФ "ФОИ""
...
}
[2]=>
array(3) {
["value"]=>
string(22) "АНО ДПО "ШАД""
...
}
}
> $response = $dadata->findById("bank", "044525225");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(23) "ПАО Сбербанк"
["unrestricted_value"]=>
string(23) "ПАО Сбербанк"
["data"]=>
array(14) {
["bic"]=>
string(9) "044525225"
["swift"]=>
string(8) "SABRRUMM"
["inn"]=>
string(10) "7707083893"
...
}
}
}
Find by SWIFT code:
> $response = $dadata->findById("bank", "SABRRUMM");
Find by INN:
> $response = $dadata->findById("bank", "7728168971");
Find by INN and KPP:
> $response = $dadata->findById("bank", "7728168971", 1, ["kpp" => "667102002"]);
Find by registration number:
> $response = $dadata->findById("bank", "1481");
> $response = $dadata->suggest("bank", "ти");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(28) "АО «Тимер Банк»"
...
}
[1]=>
array(3) {
["value"]=>
string(34) "АО «Тинькофф Банк»"
...
}
[2]=>
array(3) {
["value"]=>
string(65) "«Азиатско-Тихоокеанский Банк» (ПАО)"
...
}
...
}
> $response = $dadata->clean("name", "Срегей владимерович иванов");
> var_dump($response);
array(10) {
["source"]=>
string(50) "Срегей владимерович иванов"
["result"]=>
...
["surname"]=>
string(12) "Иванов"
["name"]=>
string(12) "Сергей"
["patronymic"]=>
string(24) "Владимирович"
["gender"]=>
string(2) "М"
["qc"]=>
int(1)
}
> $response = $dadata->suggest("fio", "викт");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(12) "Виктор"
...
}
[1]=>
array(3) {
["value"]=>
string(16) "Виктория"
...
}
[2]=>
array(3) {
["value"]=>
string(18) "Викторова"
...
}
...
}
Suggest female first name:
> $filter = ["parts" => ["NAME"], gender => "FEMALE"];
> $response = $dadata->suggest("fio", "викт", 5, $filter);
> var_dump($response);
array(2) {
[0]=>
array(3) {
["value"]=>
string(16) "Виктория"
...
}
[1]=>
array(3) {
["value"]=>
string(18) "Викторина"
...
}
}
> $response = $dadata->clean("phone", "9168-233-454");
> var_dump($response);
array(14) {
["source"]=>
string(12) "9168-233-454"
["type"]=>
string(18) "Мобильный"
["phone"]=>
string(16) "+7 916 823-34-54"
...
["provider"]=>
string(50) "ПАО "Мобильные ТелеСистемы""
["country"]=>
string(12) "Россия"
["region"]=>
string(51) "Москва и Московская область"
["timezone"]=>
string(5) "UTC+3"
["qc"]=>
int(0)
}
> $response = $dadata->clean("passport", "4509 235857");
> var_dump($response);
array(4) {
["source"]=>
string(11) "4509 235857"
["series"]=>
string(5) "45 09"
["number"]=>
string(6) "235857"
["qc"]=>
int(0)
}
> $response = $dadata->suggest("fms_unit", "772 053");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(36) "ОВД ЗЮЗИНО Г. МОСКВЫ"
...
}
[1]=>
array(3) {
["value"]=>
string(68) "ОВД ЗЮЗИНО Г. МОСКВЫ ПАСПОРТНЫЙ СТОЛ 1"
...
}
[2]=>
array(3) {
["value"]=>
string(57) "ОВД ЗЮЗИНО ПС УВД ЮЗАО Г. МОСКВЫ"
...
}
...
}
> $response = $dadata->clean("email", "serega@yandex/ru");
> var_dump($response);
array(6) {
["source"]=>
string(16) "serega@yandex/ru"
["email"]=>
string(16) "[email protected]"
["local"]=>
string(6) "serega"
["domain"]=>
string(9) "yandex.ru"
["type"]=>
string(8) "PERSONAL"
["qc"]=>
int(4)
}
> $response = $dadata->suggest("email", "maria@");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(13) "[email protected]"
...
}
[1]=>
array(3) {
["value"]=>
string(15) "[email protected]"
...
}
[2]=>
array(3) {
["value"]=>
string(15) "[email protected]"
...
}
...
}
> $response = $dadata->findById("fns_unit", "5257");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(118) "Инспекция ФНС России по Канавинскому району г.Нижнего Новгорода"
["unrestricted_value"]=>
string(118) "Инспекция ФНС России по Канавинскому району г.Нижнего Новгорода"
["data"]=>
array(18) {
["code"]=>
string(4) "5257"
["oktmo"]=>
string(8) "22701000"
["inn"]=>
string(10) "5257046101"
["kpp"]=>
string(9) "525701001"
...
}
}
}
> $response = $dadata->suggest("region_court", "таганско");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(109) "Судебный участок № 371 Таганского судебного района г. Москвы"
...
}
[1]=>
array(3) {
["value"]=>
string(109) "Судебный участок № 372 Таганского судебного района г. Москвы"
...
}
[2]=>
array(3) {
["value"]=>
string(109) "Судебный участок № 373 Таганского судебного района г. Москвы"
...
}
...
}
> $response = $dadata->suggest("metro", "алекс");
> var_dump($response);
array(4) {
[0]=>
array(3) {
["value"]=>
string(37) "Александровский сад"
...
}
[1]=>
array(3) {
["value"]=>
string(24) "Алексеевская"
...
}
[2]=>
array(3) {
["value"]=>
string(54) "Площадь Александра Невского 1"
...
}
...
}
Constrain by city (Saint Petersburg):
> $filters = [[ "city" => "Санкт-Петербург" ]];
> $response = $dadata->suggest("metro", "алекс", 5, ["filters" => $filters]);
> var_dump($response);
array(2) {
[0]=>
array(3) {
["value"]=>
string(54) "Площадь Александра Невского 1"
...
}
[1]=>
array(3) {
["value"]=>
string(54) "Площадь Александра Невского 2"
...
}
}
> $response = $dadata->suggest("car_brand", "фо");
> var_dump($response);
array(3) {
[0]=>
array(3) {
["value"]=>
string(10) "Volkswagen"
...
}
[1]=>
array(3) {
["value"]=>
string(4) "Ford"
...
}
[2]=>
array(3) {
["value"]=>
string(5) "Foton"
...
}
}
> $response = $dadata->suggest("currency", "руб");
> var_dump($response);
array(2) {
[0]=>
array(3) {
["value"]=>
string(33) "Белорусский рубль"
...
}
[1]=>
array(3) {
["value"]=>
string(31) "Российский рубль"
...
}
}
> $response = $dadata->suggest("okved2", "космических");
> var_dump($response);
array(5) {
[0]=>
array(3) {
["value"]=>
string(139) "Производство космических аппаратов (в том числе спутников), ракет-носителей"
...
}
[1]=>
array(3) {
["value"]=>
string(139) "Производство частей и принадлежностей летательных и космических аппаратов"
...
}
[2]=>
array(3) {
["value"]=>
string(95) "Производство автоматических космических аппаратов"
...
}
...
}
> $response = $dadata->suggest("okpd2", "калоши");
> var_dump($response);
array(1) {
[0]=>
array(3) {
["value"]=>
string(91) "Услуги по обрезинованию валенок (рыбацкие калоши)"
...
}
}
Balance:
> $response = $dadata->getBalance();
> var_dump($response);
float(8238.20)
Usage stats:
> $response = $dadata->getDailyStats();
> var_dump($response);
array(2) {
["date"]=>
string(10) "2020-07-27"
["services"]=>
array(3) {
["merging"]=>
int(0)
["suggestions"]=>
int(45521)
["clean"]=>
int(1200)
}
}
Dataset versions:
> $response = $dadata->getVersions();
> var_dump($response);
array(3) {
["dadata"]=>
array(1) {
["version"]=>
string(26) "stable (9048:bf33b2acc8ba)"
}
["suggestions"]=>
array(2) {
["version"]=>
string(15) "20.5 (b55eb7c4)"
["resources"]=>
array(4) {
...
}
}
["factor"]=>
array(2) {
["version"]=>
string(16) "20.06 (eb70078e)"
["resources"]=>
array(8) {
...
}
}
}
$ composer install
$ ./vendor/bin/phpunit tests
This project only accepts bug fixes.
This project uses CalVer with YY.MM.MICRO schema. See changelog for details specific to each release.