forked from intelligent-environments-lab/CityLearn
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
115 changed files
with
1,020,070 additions
and
858,131 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,21 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2020 Jose Ramon Vazquez-Canteli, Intelligent Environments Laboratory | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. | ||
MIT License | ||
Copyright (c) 2020 Jose Ramon Vazquez-Canteli, Intelligent Environments Laboratory | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import numpy as np | ||
|
||
class RBC: | ||
def __init__(self, actions_spaces): | ||
self.actions_spaces = actions_spaces | ||
self.reset_action_tracker() | ||
|
||
def reset_action_tracker(self): | ||
self.action_tracker = [] | ||
|
||
def select_action(self, states): | ||
hour_day = states[0][0] | ||
multiplier = 0.4 | ||
# Daytime: release stored energy 2*0.08 + 0.1*7 + 0.09 | ||
a = [[0.0 for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
if hour_day >= 7 and hour_day <= 11: | ||
a = [[-0.05 * multiplier for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
elif hour_day >= 12 and hour_day <= 15: | ||
a = [[-0.05 * multiplier for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
elif hour_day >= 16 and hour_day <= 18: | ||
a = [[-0.11 * multiplier for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
elif hour_day >= 19 and hour_day <= 22: | ||
a = [[-0.06 * multiplier for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
|
||
# Early nightime: store DHW and/or cooling energy | ||
if hour_day >= 23 and hour_day <= 24: | ||
a = [[0.085 * multiplier for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
elif hour_day >= 1 and hour_day <= 6: | ||
a = [[0.1383 * multiplier for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))] | ||
|
||
self.action_tracker.append(a) | ||
return np.array(a, dtype = 'object') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
from common.preprocessing import * | ||
from common.rl import * | ||
import torch.optim as optim | ||
from torch.optim import Adam | ||
import json | ||
|
||
class SAC: | ||
def __init__(self, building_ids, | ||
buildings_states_actions, | ||
building_info, | ||
observation_spaces = None, | ||
action_spaces = None, | ||
hidden_dim=[256,256], | ||
discount=0.99, | ||
tau=5e-3, | ||
lr=3e-4, | ||
batch_size=256, | ||
replay_buffer_capacity = 1e5, | ||
start_training = 6000, | ||
exploration_period = 7000, | ||
action_scaling_coef = 0.5, | ||
reward_scaling = 5., | ||
update_per_step = 2, | ||
seed = 0): | ||
|
||
with open(buildings_states_actions) as json_file: | ||
self.buildings_states_actions = json.load(json_file) | ||
|
||
self.building_ids = building_ids | ||
self.start_training = start_training | ||
self.discount = discount | ||
self.batch_size = batch_size | ||
self.tau = tau | ||
self.action_scaling_coef = action_scaling_coef | ||
self.reward_scaling = reward_scaling | ||
torch.manual_seed(seed) | ||
np.random.seed(seed) | ||
self.deterministic = False | ||
self.update_per_step = update_per_step | ||
self.exploration_period = exploration_period | ||
|
||
self.action_list_ = [] | ||
self.action_list2_ = [] | ||
|
||
self.time_step = 0 | ||
self.norm_flag = {uid : 0 for uid in building_ids} | ||
self.action_spaces = {uid : a_space for uid, a_space in zip(building_ids, action_spaces)} | ||
self.observation_spaces = {uid : o_space for uid, o_space in zip(building_ids, observation_spaces)} | ||
|
||
# Optimizers/Loss using the Huber loss | ||
self.soft_q_criterion = nn.SmoothL1Loss() | ||
|
||
# device | ||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
print('Device:'+"cuda" if torch.cuda.is_available() else "cpu") | ||
self.critic1_loss_, self.critic2_loss_, self.actor_loss_, self.alpha_loss_, self.alpha_ = {}, {}, {}, {}, {} | ||
|
||
|
||
self.replay_buffer, self.soft_q_net1, self.soft_q_net2, self.target_soft_q_net1, self.target_soft_q_net2, self.policy_net, self.soft_q_optimizer1, self.soft_q_optimizer2, self.policy_optimizer, self.target_entropy, self.alpha, self.encoder, self.norm_mean, self.norm_std, self.r_norm_mean, self.r_norm_std, self.norm_mean, self.norm_std, self.r_norm_mean, self.r_norm_std, = {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {} | ||
|
||
for uid in building_ids: | ||
self.critic1_loss_[uid], self.critic2_loss_[uid], self.actor_loss_[uid], self.alpha_[uid] = [], [], [], [] | ||
self.encoder[uid] = [] | ||
state_n = 0 | ||
for s_name, s in self.buildings_states_actions[uid]['states'].items(): | ||
if not s: | ||
self.encoder[uid].append(0) | ||
elif s_name in ["month", "hour"]: | ||
self.encoder[uid].append(periodic_normalization(self.observation_spaces[uid].high[state_n])) | ||
state_n += 1 | ||
elif s_name == "day": | ||
self.encoder[uid].append(onehot_encoding([1,2,3,4,5,6,7,8])) | ||
state_n += 1 | ||
elif s_name == "daylight_savings_status": | ||
self.encoder[uid].append(onehot_encoding([0,1])) | ||
state_n += 1 | ||
elif s_name == "net_electricity_consumption": | ||
self.encoder[uid].append(remove_feature()) | ||
state_n += 1 | ||
else: | ||
self.encoder[uid].append(normalize(self.observation_spaces[uid].low[state_n], self.observation_spaces[uid].high[state_n])) | ||
state_n += 1 | ||
|
||
self.encoder[uid] = np.array(self.encoder[uid]) | ||
|
||
# If there is no solar PV installed, remove solar radiation variables | ||
if building_info[uid]['solar_power_capacity (kW)'] == 0: | ||
for k in range(12,20): | ||
if self.encoder[uid][k] != 0: | ||
self.encoder[uid][k] = -1 | ||
if self.encoder[uid][24] != 0: | ||
self.encoder[uid][24] = -1 | ||
if building_info[uid]['Annual_DHW_demand (kWh)'] == 0 and self.encoder[uid][26] != 0: | ||
self.encoder[uid][26] = -1 | ||
if building_info[uid]['Annual_cooling_demand (kWh)'] == 0 and self.encoder[uid][25] != 0: | ||
self.encoder[uid][25] = -1 | ||
if building_info[uid]['Annual_nonshiftable_electrical_demand (kWh)'] == 0 and self.encoder[uid][23] != 0: | ||
self.encoder[uid][23] = -1 | ||
|
||
self.encoder[uid] = self.encoder[uid][self.encoder[uid]!=0] | ||
self.encoder[uid][self.encoder[uid]==-1] = remove_feature() | ||
|
||
state_dim = len([j for j in np.hstack(self.encoder[uid]*np.ones(len(self.observation_spaces[uid].low))) if j != None]) | ||
|
||
action_dim = self.action_spaces[uid].shape[0] | ||
self.alpha[uid] = 0.2 | ||
|
||
self.replay_buffer[uid] = ReplayBuffer(int(replay_buffer_capacity)) | ||
|
||
# init networks | ||
self.soft_q_net1[uid] = SoftQNetwork(state_dim, action_dim, hidden_dim).to(self.device) | ||
self.soft_q_net2[uid] = SoftQNetwork(state_dim, action_dim, hidden_dim).to(self.device) | ||
|
||
self.target_soft_q_net1[uid] = SoftQNetwork(state_dim, action_dim, hidden_dim).to(self.device) | ||
self.target_soft_q_net2[uid] = SoftQNetwork(state_dim, action_dim, hidden_dim).to(self.device) | ||
|
||
for target_param, param in zip(self.target_soft_q_net1[uid].parameters(), self.soft_q_net1[uid].parameters()): | ||
target_param.data.copy_(param.data) | ||
|
||
for target_param, param in zip(self.target_soft_q_net2[uid].parameters(), self.soft_q_net2[uid].parameters()): | ||
target_param.data.copy_(param.data) | ||
|
||
# Policy | ||
self.policy_net[uid] = PolicyNetwork(state_dim, action_dim, self.action_spaces[uid], self.action_scaling_coef, hidden_dim).to(self.device) | ||
self.soft_q_optimizer1[uid] = optim.Adam(self.soft_q_net1[uid].parameters(), lr=lr) | ||
self.soft_q_optimizer2[uid] = optim.Adam(self.soft_q_net2[uid].parameters(), lr=lr) | ||
self.policy_optimizer[uid] = optim.Adam(self.policy_net[uid].parameters(), lr=lr) | ||
self.target_entropy[uid] = -np.prod(self.action_spaces[uid].shape).item() | ||
|
||
|
||
def select_action(self, states): | ||
|
||
self.time_step += 1 | ||
explore = self.time_step <= self.exploration_period | ||
actions = [] | ||
k = 0 | ||
|
||
deterministic = (self.time_step > 3*8760) | ||
|
||
for uid, state in zip(self.building_ids, states): | ||
if explore: | ||
actions.append(self.action_scaling_coef*self.action_spaces[uid].sample()) | ||
else: | ||
state_ = np.array([j for j in np.hstack(self.encoder[uid]*state) if j != None]) | ||
|
||
state_ = (state_ - self.norm_mean[uid])/self.norm_std[uid] | ||
state_ = torch.FloatTensor(state_).unsqueeze(0).to(self.device) | ||
|
||
if deterministic is False: | ||
act, _, _ = self.policy_net[uid].sample(state_) | ||
else: | ||
_, _, act = self.policy_net[uid].sample(state_) | ||
|
||
actions.append(act.detach().cpu().numpy()[0]) | ||
|
||
return np.array(actions), None | ||
|
||
|
||
def add_to_buffer(self, states, actions, rewards, next_states, done, coordination_vars, coordination_vars_next): | ||
|
||
for (uid, o, a, r, o2,) in zip(self.building_ids, states, actions, rewards, next_states): | ||
# Run once the regression model has been fitted | ||
# Normalize all the states using periodical normalization, one-hot encoding, or -1, 1 scaling. It also removes states that are not necessary (solar radiation if there are no solar PV panels). | ||
|
||
o = np.array([j for j in np.hstack(self.encoder[uid]*o) if j != None]) | ||
o2 = np.array([j for j in np.hstack(self.encoder[uid]*o2) if j != None]) | ||
|
||
if self.norm_flag[uid] > 0: | ||
o = (o - self.norm_mean[uid])/self.norm_std[uid] | ||
o2 = (o2 - self.norm_mean[uid])/self.norm_std[uid] | ||
r = (r - self.r_norm_mean[uid])/self.r_norm_std[uid] | ||
|
||
self.replay_buffer[uid].push(o, a, r, o2, done) | ||
|
||
if self.time_step >= self.start_training and self.batch_size <= len(self.replay_buffer[self.building_ids[0]]): | ||
for uid in self.building_ids: | ||
if self.norm_flag[uid] == 0: | ||
X = np.array([j[0] for j in self.replay_buffer[uid].buffer]) | ||
self.norm_mean[uid] = np.mean(X, axis=0) | ||
self.norm_std[uid] = np.std(X, axis=0) + 1e-5 | ||
|
||
R = np.array([j[2] for j in self.replay_buffer[uid].buffer]) | ||
self.r_norm_mean[uid] = np.mean(R) | ||
self.r_norm_std[uid] = np.std(R)/self.reward_scaling + 1e-5 | ||
|
||
new_buffer = [] | ||
for s, a, r, s2, dones in self.replay_buffer[uid].buffer: | ||
s_buffer = np.hstack(((s - self.norm_mean[uid])/self.norm_std[uid]).reshape(1,-1)[0]) | ||
s2_buffer = np.hstack(((s2 - self.norm_mean[uid])/self.norm_std[uid]).reshape(1,-1)[0]) | ||
new_buffer.append((s_buffer, a, (r - self.r_norm_mean[uid])/self.r_norm_std[uid], s2_buffer, dones)) | ||
|
||
self.replay_buffer[uid].buffer = new_buffer | ||
self.norm_flag[uid] = 1 | ||
|
||
for _ in range(self.update_per_step): | ||
for uid in self.building_ids: | ||
state, action, reward, next_state, done = self.replay_buffer[uid].sample(self.batch_size) | ||
|
||
if self.device.type == "cuda": | ||
state = torch.cuda.FloatTensor(state).to(self.device) | ||
next_state = torch.cuda.FloatTensor(next_state).to(self.device) | ||
action = torch.cuda.FloatTensor(action).to(self.device) | ||
reward = torch.cuda.FloatTensor(reward).unsqueeze(1).to(self.device) | ||
done = torch.cuda.FloatTensor(done).unsqueeze(1).to(self.device) | ||
else: | ||
state = torch.FloatTensor(state).to(self.device) | ||
next_state = torch.FloatTensor(next_state).to(self.device) | ||
action = torch.FloatTensor(action).to(self.device) | ||
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) | ||
done = torch.FloatTensor(done).unsqueeze(1).to(self.device) | ||
|
||
with torch.no_grad(): | ||
# Update Q-values. First, sample an action from the Gaussian policy/distribution for the current (next) state and its associated log probability of occurrence. | ||
new_next_actions, new_log_pi, _ = self.policy_net[uid].sample(next_state) | ||
|
||
# The updated Q-value is found by subtracting the logprob of the sampled action (proportional to the entropy) to the Q-values estimated by the target networks. | ||
target_q_values = torch.min( | ||
self.target_soft_q_net1[uid](next_state, new_next_actions), | ||
self.target_soft_q_net2[uid](next_state, new_next_actions), | ||
) - self.alpha[uid] * new_log_pi | ||
|
||
q_target = reward + (1 - done) * self.discount * target_q_values | ||
|
||
# Update Soft Q-Networks | ||
q1_pred = self.soft_q_net1[uid](state, action) | ||
q2_pred = self.soft_q_net2[uid](state, action) | ||
|
||
q1_loss = self.soft_q_criterion(q1_pred, q_target) | ||
q2_loss = self.soft_q_criterion(q2_pred, q_target) | ||
|
||
|
||
self.soft_q_optimizer1[uid].zero_grad() | ||
q1_loss.backward() | ||
self.soft_q_optimizer1[uid].step() | ||
|
||
self.soft_q_optimizer2[uid].zero_grad() | ||
q2_loss.backward() | ||
self.soft_q_optimizer2[uid].step() | ||
|
||
# Update Policy | ||
new_actions, log_pi, _ = self.policy_net[uid].sample(state) | ||
|
||
q_new_actions = torch.min( | ||
self.soft_q_net1[uid](state, new_actions), | ||
self.soft_q_net2[uid](state, new_actions) | ||
) | ||
|
||
policy_loss = (self.alpha[uid]*log_pi - q_new_actions).mean() | ||
|
||
self.policy_optimizer[uid].zero_grad() | ||
policy_loss.backward() | ||
self.policy_optimizer[uid].step() | ||
|
||
# Soft Updates | ||
for target_param, param in zip(self.target_soft_q_net1[uid].parameters(), self.soft_q_net1[uid].parameters()): | ||
target_param.data.copy_( | ||
target_param.data * (1.0 - self.tau) + param.data * self.tau | ||
) | ||
|
||
for target_param, param in zip(self.target_soft_q_net2[uid].parameters(), self.soft_q_net2[uid].parameters()): | ||
target_param.data.copy_( | ||
target_param.data * (1.0 - self.tau) + param.data * self.tau | ||
) |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Oops, something went wrong.