Skip to content

Main code for "Revisiting over-smoothing and over-squashing using the Ollivier-Ricci curvature" paper

License

Notifications You must be signed in to change notification settings

hieubkvn123/revisiting-gnn-curvature

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BORF

BORF: Batch Ollivier Ricci Flow for unifying and addressing over-smoothing and over-squashing in GNN.

Requirements

To configure and activate the conda environment for this repository, run

conda env create -f environment.yml
conda activate borf 
pip install -r requirements.txt

Experiments

1. For graph classification

To run experiments for the TUDataset benchmark, run the file run_graph_classification.py. The following command will run the benchmark for BORF with 20 iterations:

python run_graph_classification.py --rewiring borf --num_iterations 20

To add options for number of edges added and removed for rewiring, add the --borf_batch_add and --borf_batch_remove options

# Runs BORF with 3 batches, add 3 edges per batch and remove 1 edge per batch
python run_graph_classification.py --rewiring borf --num_iterations 3 \
	--borf_batch_add 3 \
	--borf_batch_remove 1

2. For node classification

To run node classification, simply change the script name to run_node_classification.py. For example:

python run_node_classification.py --rewiring borf --num_iterations 3 \
	--borf_batch_add 3 \
	--borf_batch_remove 1

Other rewiring methods

BORF is compared with other rewiring options, including SDRF and FoSR. The best hyper-paramters for these methods are specified in the following scripts:

  • For FoSR:

    • scripts/run_node_fosr.sh
    • scripts/run_graph_fosr.sh
  • For SDRF:

    • scripts/run_node_sdrf.sh
    • scripts/run_graph_sdrf.sh

1. Stochastic Discrete Ricci Flow (SDRF)

To run SDRF rewiring for both graph and node classification, add the rewiring option sdrf_bfc and the hyper-parameters for SDRF (--sdrf_remove_edges and --num_iterations). The following is an example of running SDRF with 10 iterations and edge removal enabled:

python run_node_classification.py --layer_type GCN \
	--rewiring sdrf_bfc \
	--num_iterations 10 \
	--sdrf_remove_edges

python run_graph_classification.py --layer_type GCN \
	--rewiring sdrf_bfc \
	--num_iterations 10 \
	--sdrf_remove_edges

2. First-order Spectral Rewiring (FoSR)

To run FoSR, add the fosr rewiring option and the hyper-parameters for FoSR (--num_iterations). The following is an example of running FoSR with 10 iterations:

python run_node_classification.py --layer_type GCN \
	--rewiring fosr \
	--num_iterations 10

python run_graph_classification.py --layer_type GCN \
	--rewiring fosr \
	--num_iterations 10

Citation and reference

For technical details and full experiment results, please check our paper.

@inproceedings{
nguyen2023revisiting,
title={Revisiting Over-smoothing and Over-squashing Using {Ollivier-Ricci} Curvature},
author={Khang Nguyen and Hieu Nong and Vinh Nguyen and Nhat Ho and Stanley Osher and Tan Nguyen},
booktitle={International Conference on Machine Learning},
year={2023}
}

About

Main code for "Revisiting over-smoothing and over-squashing using the Ollivier-Ricci curvature" paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published