All time units are in milliseconds (ms), (Warning) Nearest interpolation is used by default.
TRT-Engine | Postprocess | mean Total | mIou | config | |
---|---|---|---|---|---|
NVIDIA 3090 FP16 | 5.06 | 0.01 | 5.07 | 31.95 | M0:FO(BEVDetOCC)-R50 |
NVIDIA 3090 FP16 | 6.55 | 0.01 | 6.56 | 32.08 | M1:FO(BEVDetOCC)-R50 |
The Project provides a test sample that can also be used for inference on the nuScenes dataset. When testing on the nuScenes dataset, you need to use the data_infos folder provided by this project. The data folder should have the following structure:
└── data
├── nuscenes
├── data_infos [Download1]
├── samples_infos
├── sample0000.yaml
├── sample0001.yaml
├── ...
├── samples_info.yaml
├── time_sequence.yaml
├── samples
├── sweeps
├── ...
└── debug_file_from_torch [Download2]
├── params_for_lss
├── torch_out_for_c_debug_0
├── torch_out_for_c_debug_100
└── torch_out_for_c_debug_sdfdsf
└── onnx_for_c_trt [Download3]
├── flashocc-r50
└── flashocc-r50-M0
- [Download1] can be downloaded from Google drive or Baidu Netdisk
- [Download2] can be downloaded from Google drive
- [Download3] can be downloaded from Google drive
For desktop or server:
- CUDA 11.8
- cuDNN 8.6.0
- TensorRT 8.4.0.6
- yaml-cpp
- Eigen3
- libjpeg
For Jetson AGX Orin [no check]
- Jetpack 5.1.1
- CUDA 11.4.315
- cuDNN 8.6.0
- TensorRT 8.4.0.6
- yaml-cpp
- Eigen3
- libjpeg
- You can direct use the onnx from the Download3 above.
- or export onnx follow Quick Test Via TensorRT In MMDeploy
python tools/analysis_tools/benchmark_trt.py $config $engine
rm -r ./build/*
cd ./build
clear
cmake .. && make
rm ../model/bevdet_fp16.engine
./export ../onnx_for_c_trt/flashocc-r50/bevdet_fp16_fuse_for_c_and_trt.onnx ../model/bevdet_fp16.engine
./build/bevdemo ./flashocc_quick_check_for_alignation_with_torch.yaml
torch_cls_occ_label = np.loadtxt("./debug_file_from_torch/torch_out_for_c_debug_0/torch_cls_occ_label.txt")
c_cls_occ_label = np.loadtxt("./c++_output/bevdet_occ_label_result_cpu.txt")
print('acc is: ', (torch_cls_occ_label == c_cls_occ_label).sum()/(c_cls_occ_label.shape[0]))
# acc is: 0.998534375
rm ../model/bevdet_fp16.engine
./export ../onnx_for_c_trt/flashocc-r50-M0/bevdet_fp16_fuse_for_c_and_trt.onnx ../model/bevdet_fp16.engine
./build/bevdemo ./flashocc.yaml