forked from MLNeurosurg/deepglioma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
307 lines (277 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""DeepGlioma for rapid molecular classification of fresh brain tumor specimens
imaged using stimulated Raman histology. This is the main script for training and
validating models.
"""
import datetime
from typing import TextIO
import json
import yaml
import argparse
import numpy as np
import pandas as pd
from sklearn.utils.class_weight import compute_class_weight
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
# import dataset
from datasets.deepglioma_dataset import DeepGlioma_Dataset
from datasets.data_utils import train_validation_split, label_frequency, oversample_label
from datasets.data_utils import image_transforms, get_glioma_data, get_labels
# import models
from models.classifiers import Linear_Classifier, Tran_Classifier
from models.utils import get_embedding_weights, save_model
# training modules
from runners import run_epoch
from utils.evaluate import compute_metrics, print_results
from utils.metrics import aggregate_predictions
# get config file
def parse_args() -> TextIO:
parser = argparse.ArgumentParser()
parser.add_argument('-c',
'--config',
type=argparse.FileType('r'),
required=True,
help='config file for training')
args = parser.parse_args()
return args.config
cf_fd = parse_args()
def main():
cmd_input: TextIO = parse_args()
if cmd_input.name.endswith(".json"):
return json.load(cf_fd)
elif cmd_input.name.endswith(".yaml") or cf_fd.name.endswith(".yml"):
return yaml.load(cf_fd, Loader=yaml.FullLoader)
config_dict = main()
#### DATA PREP #################################################################
# load the training data
labels = config_dict['data']['labels']
gen_series = pd.DataFrame()
gen_labels = pd.DataFrame()
for center in config_dict['data']['train_centers']:
gen_series = gen_series.append(
pd.read_excel(config_dict['data']['data_spreadsheet'],
sheet_name=f'{center}_series'),
ignore_index=True)
gen_labels = gen_labels.append(pd.read_excel(
config_dict['data']['data_spreadsheet'], sheet_name=f'{center}_data'),
ignore_index=True)
gen_labels = get_labels(gen_labels, labels)
print(gen_labels)
# load validation data
if config_dict['validation']['val_type'] == 'easy':
validation_cases = [
"NIO_1", "NIO_2", "NIO_3", "NIO_4", "NIO_5",
"NIO_6", "NIO_7", "NIO_8"
]
if config_dict['validation']['val_type'] == 'hard':
validation_cases = [
'NIO_9', 'NIO_10', 'NIO_10', 'NIO_11', 'NIO_12',
'NIO_13', 'NIO_14', 'NIO_15'
]
if config_dict['validation']['val_type'] == 'random':
validation_cases = gen_labels.groupby("idh").sample(
n=8, random_state=config_dict['validation']
['random_seed'])['dbcase'].tolist()
if config_dict['validation']['val_type'] == None:
validation_cases = []
print(f'Validation cases: {sorted(validation_cases)}')
# generate dataset
data = get_glioma_data(study_df=gen_series,
labels_df=gen_labels,
data_root_path=config_dict['data']['data_root'])
train_data, val_data = train_validation_split(data, validation_cases)
# balance the labels to improve training
if len(labels) is 1:
train_data = oversample_label(train_data,
label_index=0,
perc_majority_label=1)
if len(labels) >= 3:
train_data = oversample_label(train_data,
label_index=2,
perc_majority_label=1)
train_data = oversample_label(train_data,
label_index=1,
perc_majority_label=0.5)
train_freq, label_array = label_frequency(train_data)
print(f'Training label frequency: {train_freq}')
if config_dict['validation']['val_type'] is not None:
val_freq, label_array = label_frequency(val_data)
print(f'Validation label frequency: {val_freq}')
# compute label weights matrix
if config_dict['training']['label_weights']:
weights = np.zeros(shape=(2, len(config_dict['data']['labels'])))
for l in range(len(labels)):
weights[:, l] = compute_class_weight(class_weight='balanced',
classes=np.unique(label_array[:,
l]),
y=label_array[:, l])
else:
weights = None
#### GET DATALOADERS ###########################################################
# train dataloader
train_dataset = DeepGlioma_Dataset(
num_labels=len(labels),
data=train_data,
img_root=config_dict['data']['data_root'],
transform=image_transforms(
image_size=config_dict['data']['image_size'],
strength=config_dict['data']['transform_strength']),
known_labels=config_dict['training']['known_labels'],
testing=False)
train_loader = DataLoader(train_dataset,
batch_size=config_dict['training']['batch_size'],
shuffle=True)
# validation dataloader
val_transforms = transforms.Compose([transforms.ToTensor()])
val_dataset = DeepGlioma_Dataset(num_labels=len(labels),
data=val_data,
img_root=config_dict['data']['data_root'],
transform=val_transforms,
known_labels=0,
testing=False)
valid_loader = DataLoader(val_dataset,
batch_size=config_dict['training']['batch_size'],
shuffle=False)
#### LOAD MODELS ###############################################################
# All models currently using ResNet50
classifier = config_dict['model']['classifier']
if classifier == 'linear':
model = Linear_Classifier(
num_labels=len(labels),
backbone=config_dict['model']['vision_backbone'],
pretrained_vision_encoder=config_dict['model']
['pretrained_vision_model'],
freeze_backbone=config_dict['model']['freeze_feature_extractor'])
if classifier == 'tran':
if config_dict['model']['pretrain_embed']:
embed_weights = torch.load(config_dict['model']['embed_weights'])
gene_to_idx = torch.load(config_dict['model']['gene_to_idx'])
emb_weights = get_embedding_weights(embed_weights,
config_dict['data']['labels'],
gene_to_idx)
else:
emb_weights = None
model = Tran_Classifier(
num_labels=len(labels),
backbone=config_dict['model']['vision_backbone'],
embedding_dim=2048,
pretrained_label_embedding=emb_weights,
freeze_embedding=config_dict['model']['freeze_embedding'],
pretrained_vision_encoder=config_dict['model']
['pretrained_vision_model'],
freeze_backbone=config_dict['model']['freeze_feature_extractor'],
use_lmt=True,
pos_emb=False,
layers=3,
heads=8,
dropout=config_dict['training']['dropout'])
# distribute model on GPUs
model_parallel = False
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs.")
model = nn.DataParallel(model)
model_parallel = True
model = model.cuda()
print(model)
# OPTIMIZER
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=config_dict['training']['lr'],
weight_decay=config_dict['training']['weight_decay'])
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=config_dict['training']['n_epochs'])
#### TRAIN MODELS ##############################################################
# mark the time for saving results and models
now = datetime.datetime.now()
now = f'{str(now.day)}-{str(now.month)}-{str(now.year)}'
# initialize dictionaries to store results
train_metrics = {}
val_predictions = {}
val_metrics = {}
total_correct_tracker = {}
total_correct_tracker[0] = 0
for epoch in range(1, config_dict['training']['n_epochs'] + 1):
print(f'======================== {epoch} ========================')
################### Train ##################################################
all_preds, all_targs, all_masks, all_missing_masks, all_ids, train_loss, train_loss_unk = run_epoch(
model,
train_loader,
optimizer,
scheduler,
n_labels=len(labels),
label_weights=weights,
iterations=config_dict['training']['iters'],
train=True,
model_type=classifier)
train_metrics = compute_metrics(
all_preds,
all_targs,
all_masks,
all_missing_masks,
train_loss,
train_loss_unk,
known_labels=config_dict['training']['known_labels'],
missing_values=config_dict['training']['missing_values'])
train_metrics[epoch] = train_metrics
print(train_metrics)
if config_dict['validation']['val_type'] == None:
continue
################### Validate ###############################################
all_preds, all_targs, all_masks, all_missing_masks, all_ids, valid_loss, valid_loss_unk = run_epoch(
model,
valid_loader,
optimizer=None,
scheduler=None,
n_labels=len(labels),
train=False,
model_type=classifier)
valid_epoch_metrics = compute_metrics(
all_preds,
all_targs,
all_masks,
all_missing_masks,
valid_loss,
valid_loss_unk,
known_labels=0,
missing_values=config_dict['training']['missing_values'])
aggregation_dict, correct_dict, binary_pred_dict, label_dict = aggregate_predictions(
all_ids,
all_preds,
all_targs,
all_masks,
all_missing_masks,
prediction_level='patient')
# print and log aggregation statistics
total_correct = print_results(labels, correct_dict, binary_pred_dict,
label_dict)
# populate epoch dictionary
valid_epoch_predictions = {}
val_preds = (all_preds, all_targs, all_masks, all_missing_masks, all_ids,
valid_loss, valid_loss_unk)
names = [
'all_preds', 'all_targs', 'all_masks', 'all_missing_masks', 'all_ids',
'valid_loss', 'valid_loss_unk'
]
for name, val in zip(names, val_preds):
valid_epoch_predictions[name] = val
# store results
val_predictions[epoch] = valid_epoch_predictions
val_metrics[epoch] = valid_epoch_metrics
# save model and checkpointing
print(f'Saving model for epoch {epoch}')
save_model(
model,
f'{config_dict["model"]["vision_backbone"]}_{config_dict["model"]["classifier"]}_{config_dict["validation"]["val_type"]}_{epoch}_{np.round(total_correct, decimals=3)}_{now}_model',
data_parallel=model_parallel)
print(valid_epoch_metrics)
# save validation data
torch.save(
val_predictions,
f'{config_dict["model"]["vision_backbone"]}_{config_dict["model"]["classifier"]}_{config_dict["validation"]["val_type"]}_{now}_val_predictions.pt'
)
torch.save(
val_metrics,
f'{config_dict["model"]["vision_backbone"]}_{config_dict["model"]["classifier"]}_{config_dict["validation"]["val_type"]}_{now}_metrics.pt'
)