Skip to content
/ what Public

Pytorch implementation of "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?"

Notifications You must be signed in to change notification settings

hmi88/what

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 

Repository files navigation

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

Pytorch implementation of "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?", NIPS 2017

1. Usage

# Data Tree
config.data_dir/
└── config.data_name/

# Project Tree
WHAT
├── WHAT_src/
│       ├── data/ *.py
│       ├── loss/ *.py
│       ├── model/ *.py
│       └── *.py
└── WHAT_exp/
         ├── log/
         ├── model/
         └── save/         

1.1 Train

# L2 loss only 
python train.py --uncertainty "normal" --drop_rate 0.

# Epistemic / Aleatoric 
python train.py --uncertainty ["epistemic", "aleatoric"]

# Epistemic + Aleatoric
python train.py --uncertainty "combined"

1.2 Test

# L2 loss only 
python train.py --is_train false --uncertainty "normal"

# Epistemic
python train.py --is_train false --uncertainty "epistemic" --n_samples 25 [or 5, 50]

# Aleatoric
python train.py --is_train false --uncertainty "aleatoric" 

# Epistemic + Aleatoric
python train.py --is_train false --uncertainty "combined" --n_samples 25 [or 5, 50]

1.3 Requirements

  • Python3.7

  • Pytorch >= 1.0

  • Torchvision

  • distutils

2. Experiment

This is not official implementation.

2.1 Network & Datset

  • Autoencoder based on Bayesian Segnet

    • Network depth 2 (paper 5)
    • Drop_rate 0.2 (paper 0.5)
  • Fahsion MNIST / MNIST

    • Input = Label (for autoencoder)

2.2 Results

2.2.1 PSNR

Combined > Aleatoric > Normal (w/o D.O) > Epistemic > Normal (w/ D.O)

drawing

2.2.2 Images

drawing Input / Label

drawing Combined

drawing Aleatoric

drawingEpistemic

About

Pytorch implementation of "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages