Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
szcf-weiya committed Oct 24, 2019
1 parent 9f22fbf commit a288ed7
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 3 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -108,16 +108,29 @@ $$
\hat{G}(x) = \argmin_{g\in \cal{G}}\sum\limits_{k=1}^KL({\cal{G}}_k,g)\Pr({\cal G}_k\mid X = x)\tag{2.21}
$$

结合 $0-1$ 损失函数上式简化为
结合 0-1 损失函数上式简化为

$$
\hat{G}(x) = \argmin_{g\in \cal{G}}[1 − \Pr(g\mid X = x)]\tag{2.22}
\hat{G}(x) = \argmin_{g\in \cal{G}}[1 − \Pr(g\mid X = x)]\tag{2.22}\label{2.22}\,.
$$

!!! note "weiya 注:推导 \eqref{2.22}"
注意到,对于 0-1 损失,
$$
L(\cG_k, g) = \begin{cases}
0 & \text{if } g=\cG_k\\
1 & \text{if } g\neq \cG_k
\end{cases}\,,
$$
则我们有
$$
\sum_{k=1}^KL({\cal{G}}_k,g)\Pr({\cal G}_k\mid X = x) = \sum_{k=1}^K\Pr(\cG_k\neq g\mid X=x)=1-\Pr(\cG_k=g\mid X=x)\,.
$$

或者简单地

$$
\hat{G}(X) = {\cal{G}}_k \text{ if } \Pr({\cal{G}}_k\mid X = x) = \underset{g\in{\cal{G}}}{max } \Pr(g\mid X = x)\tag{2.23}
\hat{G}(X) = {\cal{G}}_k \text{ if } \Pr({\cal{G}}_k\mid X = x) = \underset{g\in{\cal{G}}}{\max } \Pr(g\mid X = x)\tag{2.23}
$$

合理的解决方法被称作 **贝叶斯分类 (Bayes classifier)**,利用条件(离散)分布 $\Pr(G\mid X)$ 分到最合适的类别.对于我们模拟的例子图 2.5 显示了最优的贝叶斯判别边界.贝叶斯分类的误差阶被称作 **贝叶斯阶 (Bayes rate)**
Expand Down
1 change: 1 addition & 0 deletions docs/js/mathjax.js
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ window.MathJax = {
calC: "{{\\cal{C}}}",
calS: "{{\\cal{S}}}",
calI: "{{\\cal{I}}}",
cG: "{{\\cal{G}}}",
cH: "{{\\cal{H}}}",
cM: "{{\\cal{M}}}",
cP: "{{\\cal{P}}}",
Expand Down

0 comments on commit a288ed7

Please sign in to comment.