Skip to content

honggkang/hetero-model-fl-gen

Repository files navigation

Heterogeneous-Model Federated Learning

Federated Learning (FL) has emerged as a promising paradigm in distributed learning, aiming to train a single global model while preserving the privacy of individual users. However, the increasing size of recent models introduces challenges of model heterogeneity, encompassing diverse computing capabilities and network bandwidth conditions across clients.

We propose Generative Model-Aided Federated Learning GeFL, which incorporates a conditional generative model trained in a federated manner to aggregate global knowledge under model heterogeneity. Through a series of experiments on various image classification tasks, we demonstrate the discernible performance improvements of GeFL compared to baselines, as well as its limitations in terms of privacy and scalability. To tackle concerns addressed in GeFL, we introduce a novel framework, GeFL-F, feature-generative model-aided FL, by decoupling each target network into a common feature extractor and heterogeneous header. We empirically demonstrate the consistent performance gains of GeFL-F, while proving better privacy preservation and robustness to a large number of clients.

drawing

drawing

Examples

GeFL (DCGAN)

python GeFL_DCGAN.py --aid_by_gen 1 --num_users 10 --device_id 0 --freeze_gen 0 --gen_model gan

GeFL (DCGAN-F)

python GeFL_DCGAN-F.py --aid_by_gen 1 --num_users 10 --device_id 0 --freeze_gen 0 --gen_model ganf

GeFL (CVAE)

python GeFL_CVAE.py --aid_by_gen 1 --num_users 10 --device_id 0 --gen_model vae

GeFL-F (CVAE-F)

python GeFL_CVAE-F.py --aid_by_gen 1 --num_users 100 --device_id 0 --name 100cvaef --gen_model vaef

GeFL-F (DDPM)

python GeFL_DDPM.py --aid_by_gen 1 --guide_w 0 --num_users 10 --device_id 0 --name 100ddpm --gen_model ddpm

GeFL-F (DDPM-F)

python GeFL_DDPM-F.py --aid_by_gen 1 --guide_w 0 --num_users 10 --device_id 0 --name 100ddpmf --gen_model ddpmf

FedAvg

python GeFL_CVAE.py --aid_by_gen 0 --avg_FE 0

FedProx

python GeFL_CVAE.py --aid_by_gen 0 --avg_FE 0 --fedprox 1

LG-FedAvg

python GeFL_CVAE.py --aid_by_gen 0 --avg_FE 1

AvgKD

python GeFL_CVAE.py --aid_by_gen 0 --avg_FE 0 --avgKD 1

Citation

Honggu Kang, Seohyeon Cha, and Joonhyuk Kang. GeFL: Model-Agnostic Federated Learning with Generative Models. arXiv preprint arXiv:2412.18460, 2024.

@article{kang2024gefl,
      title={{GeFL}: {M}odel-Agnostic Federated Learning with Generative Models}, 
      author={Honggu Kang and Seohyeon Cha and Joonhyuk Kang},
      year={2024},
      eprint={2412.18460},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2412.18460}, 
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages